
 Mobility Control Protocol for MOFI

1

Mobility Control Protocol for MOFI

 (Release 1.0)

September 2010

Ji In Kim and Seok Joo Koh

Kyungpook National University (KNU), sjkoh@knu.ac.kr

Summary

This document specifies the Mobility Control Protocol (MCP) for the Mobile Oriented Future
Internet (MOFI). This study is motivated from the observation that future Internet would be
evolved toward ‘mobile-oriented’ network environment, but current Internet was historically
designed for ‘static’ network environment and thus it is inevitably subject to some architectural
limitations in the viewpoint of ‘mobile-oriented’ future network. The MCP with MOFI is designed
with the following principles: Host Identifier (HID) and Network Locator (LOC), ID-based global
communication and LOC-based local routing, protocol separation for data delivery in the access
and backbone networks, and functional separation for mobility control and data delivery. For
data delivery, the Access Delivery Protocol (ADP) is used in the access network, whereas the
current IPv4/IPv6 will be used as Backbone Delivery Protocol (BDP) in the backbone network. The
MCP provides the mobility control functionality: HID binding, LOC binding and query, and
handover control. The HID binding is used for a host to bind its HID with an access router, which
is performed between hosts and access routers. The LOC Binding is used for Access Control
Agent (ACA) to bind the mapping information between HID and LOC with LOC Management
System (LBS). The LOC Query is used for ACA to obtain the LOC information for a HID from LBS.
To support the handover control, LOC Update operation is performed to update a new LOC
between a local ACA and a remote ACA, when a host moves into a new AR region. Some of
implementation issues are discussed.

 Mobility Control Protocol for MOFI

2

TABLE OF CONTENTS

1. DESIGN CONSIDERATIONS ... 4
1.1 DESIGN PRINCIPLES ... 4

1.1.1 HOST IDENTIFIERS AND NETWORK LOCATORS .. 4
1.1.2 ID-BASED COMMUNICATIONS AND LOC-BASED ROUTING .. 4
1.1.3 Protocol Separation for Data Delivery in Access and Backbone Networks 4
1.1.4 Functional Separation for Mobility Control and Data Delivery .. 5

1.2 FUNCTIONAL ARCHITECTURE .. 5
1.2.1 HOSTS ... 6
1.2.2 ACCESS NETWORK AND ACCESS ROUTER (AR) ... 6
1.2.3 BACKBONE NETWORK ... 7
1.2.4 ACCESS CONTROL AGENT (ACA) .. 7
1.2.5 LOC BINDING SYSTEM (LBS) ... 7

2. DATA DELIVERY MODEL .. 8
2.1 PROTOCOL FOR DATA DELIVERY ... 8

2.1.1 ACCESS DELIVERY PROTOCOL (ADP) .. 9
2.1.2 BACKBONE DELIVERY PROTOCOL (BDP) ... 9

2.2 DATA TRANSPORT PROCEDURES ... 9

3. PROCEDURES ... 11
3.1 HID BINDING (HB) ... 11

3.1.1 OPERATIONS .. 11
3.1.2 HID CACHE (HC) .. 12

3.2 LOC BINDING (LB) AND LOC QUERY (LQ) ... 12
3.2.1 PROTOCOL MODEL ... 12
3.2.2 LB OPERATIONS ... 13
3.2.3 LBS WITH LOC DATABASE (DB) .. 13
3.2.4 ACA WITH LOC CACHE (LC) .. 14
3.2.5 LQ OPERATIONS .. 14

3.3 HANDOVER CONTROL .. 16
3.3.1 PROTOCOL MODEL ... 16
3.3.2 OPERATIONS .. 16

4. PACKETS ... 18
4.1 DATA PACKET ... 18

4.1.1 HEADER FORMAT.. 18
4.1.2 ENCAPSULATION ... 19

4.2 MCP PACKETS ... 19
4.2.1 PACKET FORMAT ... 19
4.2.2 PACKET TYPES .. 20

5. IMPLEMENTATIONS .. 21
5.1 NETFILTER ... 21

5.1.1 NETFILTER ARCHITECTURE ... 21
5.1.2 NETFILTER PACKET FILTERING TYPE .. 22
5.1.3 HOW TO USE NETFILTER ... 23

5.2 IMPLEMENTATION ENVIRONMENTS ... 24
5.3 HOST SIDE ... 25

5.3.1 DATA HEADER .. 25
5.3.2 SENDER ... 26
5.3.3 RECEIVER ... 26

5.4 ACCESS ROUTER SIDE .. 27
5.4.1 SENDER ... 27

 Mobility Control Protocol for MOFI

3

5.4.2 RECEIVER ... 28

REFERENCES ... 29

ABBREVIATIONS .. 29

 Mobility Control Protocol for MOFI

4

1. DESIGN CONSIDERATIONS

1.1 DESIGN PRINCIPLES

The Mobility Control Protocol (MCP) for MOFI is designed with the following principles.

1.1.1 HOST IDENTIFIERS AND NETWORK LOCATORS

Based on the MOFI architecture [1], the MCP is designed with the host identifier (HID) and
network locator (LOC).

For delivery of data packets, a host is identified by HID in a static and secure manner. At present,
we consider the format of 128-bit HID. This may be similar to the Host Identity Tag (HIT) of Host
Identity Protocol (HIP) [2], which generated based on the Overlay Routable Cryptographic Hash
Identifiers (ORCHID) [3]. In particular, it is required that a HID should be specified in the
hierarchical format for scalable management of HIDs in the world-wide scale, which may include
the information of network domain identifier such as Autonomous System (AS) number of a
domain. This is still for further study.

Locator (LOC) is used to represent the location of an object in the network. LOC is also used for
delivery of data packets between objects in the network. In MOFI, an ‘IP address’ of the access
router (attached to the end host) is used as LOC of the end host. The LOC is used for packet
routing only in the backbone network, whereas the HID is used for communication only in the
access network. In mobile environments, a host may change its LOCs by movement, but its HID
will not change.

1.1.2 ID-BASED COMMUNICATIONS AND LOC-BASED ROUTING

In MOFI, the end-to-end communication between two end hosts will be performed by using HIDs.
Each HID shall be globally unique in the network, and it will use an appropriate socket interface
that consists of a HID and a port number.

On the other hand, the routing for packet delivery will be done only using the LOCs, i. e., IP
address of the access router. The LOCs may be locally used in the backbone network.
Furthermore, one or more LOCs and different routing schemes may be used, if the data packets
are delivered to the final end hosts through several backbone network domains.

1.1.3 Protocol Separation for Data Delivery in Access and Backbone Networks

In MOFI, the data delivery protocols used in access and backbone networks will be separated
from the MCP which is specified in this document. In particular, it is expected that there are many
kinds of heterogeneous access networks in the future Internet environment. Each access
network may have quite different characteristics such as bandwidth and delay, and hence the
protocols used for data delivery may also be different. To support these heterogeneous access
networks, we will separate the protocols used for data delivery into Access Delivery Protocol
(ADP) and Backbone Delivery Protocol (BDP). Each access network may use its own ADP and
routing schemes.

 Mobility Control Protocol for MOFI

5

In the mean time, we will use the current IPv4/v6 protocols for data delivery in the backbone
network, which is taken as an incremental approach to deployment of future Internet. This is
because the backbone network is quite difficult to replace with a completely new protocol at a
stretch, compared to the access network. This approach will also be helpful for migration from
the current Internet to the clean-slate future Internet.

1.1.4 Functional Separation for Mobility Control and Data Delivery

We note that the control information (e.g., for mobility control) is usually mission-critical and
thus requires the fast and reliable delivery in the network. Accordingly, the control plane (or
function) needs to be performed differently from the user data plane (function), as done in the
current cellular systems.

In particular, MCP will be designed for network-based mobility control, since the network-based
mobility scheme is preferred to the host-based mobility scheme in the viewpoint of resource
utilization, protocol performance and deployment, as shown in the comparison of MIPv6 [4] and
Proxy MIPv6 (PMIPv6) [5]. In addition, the mobility control of MCP will provide the ‘intrinsic’
route optimization, by which the direct path should be used between two hosts from the
beginning of communication with the help of the mobility control.

1.2 FUNCTIONAL ARCHITECTURE

We consider the following functional reference model of MOFI/MCP, as shown in the figure
below.

Figure 1 – Functional reference model of MOFI

 Mobility Control Protocol for MOFI

6

1.2.1 HOSTS

A host has one or more Link Identifiers (LIDs), depending on whether the host has a single or
multiple network interfaces for host multi-homing. We consider Link ID (LID) to identify a link
(connection point or interface) of a host to the access network, which is needed for data packet
delivery between the access router and a host. Examples of LID include the IEEE 802 MAC
address and any other link-layer physical addresses of hosts for wired/wireless network
interfaces.

An LID is given for each network interface of a host, and thus a multi-homing host may have two
or more LIDs. The specific format of LID depends on the associated link-layer access
technologies. At present, we consider the following LIDs:

 IEEE 802 MAC address (for LAN or WLAN);
 GPRS Tunnel ID (for cellular networks);
 IPv6 or IPv4 address (for overlay network).

In a certain case, a LID may consist of a sequence of two or more IDs for an access router to
identify the host in the access network (for example, one or more PoAs are located between host
and access router).

 For communication, a host shall be attached to an AR in the network. When a host is attached to
an AR, its HID and LID(s) shall be registered with AR. This operation is called ‘HID Binding.’

1.2.2 ACCESS NETWORK AND ACCESS ROUTER (AR)

In future Internet, there may be a variety of wired/wireless access networks between hosts and
AR. Depending on the underlying access network, one or more Point of Attachments (PoAs) or
routers may be located between host and AR, as shown in the example of wireless ad hoc,
sensor, or wireless mesh networks.

Figure 2 – Configuration of AR and PoA

In the deployment perspective of an access network, as shown in Fig. 2, an AR may be located
over the underlying link-layer Point of Attachment (PoA), in which host is directly connected to
AR in the link layer (Fig. 2(a)). Alternatively, one or more PoAs may be connected to the AR, as

 Mobility Control Protocol for MOFI

7

shown in Fig. 2(b). In this case, a host communicates with AR via one of candidate PoAs, in which
the mobility of host across two neighbouring PoAs will be managed by the corresponding link-
layer mobility management scheme, which is outside the scope of MCP. In a certain case, a tree
hierarchy of PoAs with two or more levels may be configured in the network, as seen in Fig. 2(c)
such as the wireless mesh networks of IEEE 802.11s.

With network attachment, a host shall bind its HID and LID to AR via the HID Binding operation.
After that, the host sends or receives data packets to or from AR by using the Access Delivery
Protocol (ADP). That is, AR receives the data packets from its local host and forwards them to the
correspondent host in the network by using the legacy IPv4/IPv6 protocols. When AR receives
data packets from the remote AR, it will deliver those packets to the local hosts by using the ADP.

In the perspective of mobility control, AR uses its Access Control Agent (ACA), which will be
described later.

1.2.3 BACKBONE NETWORK

In MCP, the backbone network represents the legacy Internet that consists of a lot of site
networks, ISPs, and network providers. In the Internet backbone network, the data delivery
mechanisms will follow the currently used IPv4/IPv6 protocols.

1.2.4 ACCESS CONTROL AGENT (ACA)

ACA is an agent located with AR, which is in charge of control operations such as LOC binding and
query. Each ACA is likely to be implemented with AR. That is, AR and ACA may be just logically (or
functionally) separated, but physically co-located over the same equipment, as shown in the
example of MSC and VLR in the GSM system.

Each ACA performs LOC binding and query operations with LBS by using the MCP, which is used
to get the information of LOC for data delivery. MCP is also used for handover control of mobile
hosts, which is performed between ACAs.

1.2.5 LOC BINDING SYSTEM (LBS)

The LBS provides a database for binding between HID and LOC. When LBS receives an LOC
binding request message from an ACA, it creates or updates the HID-LOC binding information in
the database. In addition, when an ACA asks LBS for the HID-LOC binding information to a
specific HID, LBS will reply with the corresponding LOC information to the ACA. LBS may maintain
a database that contains information about users’ service profile and authentication.

The LBS is a logical overlay network that may consist of a lot of distributed servers in the world-
wide scale. For load sharing and/or scalability enhancement of control operations, the LBS may
be configured in the hierarchical or distributed manner. In addition, for scalable management of
LBS system in the mobile environments, Home LBS and Visited LBS may be used, as seen in the
example of Home Location Register (HLR) and Visited Location Register (VLR) in the GSM
system.

(Note) For scalable LBS management, a hierarchical format of HID shall be considered.

 Mobility Control Protocol for MOFI

8

2. DATA DELIVERY MODEL

The MCP is designed with the HID-based end-to-end data communications, in which the data
delivery will be done, based HID between the two end hosts.

2.1 PROTOCOL FOR DATA DELIVERY

The MCP considers a protocol stack for data transport, as shown in the figure below.

Figure 3 – Comparison of protocol stacks for data delivery: TCP/IP versus MOFI(MCP)

In MCP, the network layer is divided into the two sub-layers: HID-based communication sub-layer
and network delivery sub-layer. HID Communication sub-layer is newly defined for end-to-end
communication based on HID. This is responsible for end-to-end user data communications
between two end hosts, which include interaction with transport layer protocols (TCP, UDP) and
the provisioning of socket interface with applications.

The routing protocols for data delivery are divided into ADP and BDP. The current IP is used as
BDP for data delivery over Internet, whereas ADP is used for routing in access networks.

Fig. 4 summarizes the protocol stacks associated with data delivery between two end hosts.

Figure 4 – Data delivery model

HID is used for end-to-end communication between two end hosts. In data delivery, each AR will
translate the protocols between ADP and BDP by referring to the HIDs of data packets.

 Mobility Control Protocol for MOFI

9

2.1.1 ACCESS DELIVERY PROTOCOL (ADP)

ADP is responsible for data delivery between host and AR. ADP is specific to the underlying
access network technology, and the access network may be one-hop or multi-hop networks. In
case of multi-hop access networks, the LID will be used as an ‘access locator’ for data packet
delivery between host and AR, possibly via one or more PoAs in the access network.

In a certain access network, ADP may be omitted between host and AR, if a host is directly
connected to AR with a single hop (e.g., in the IEEE 802.3 access networks). In this case, the LID
shall be used for data delivery between host and AR.

More detailed operations and packet formats of ADP are outside the scope of this document.

2.1.2 BACKBONE DELIVERY PROTOCOL (BDP)

In MOFI, the current IPv4/IPv6 routing/forwarding schemes are used as BDP at present. Thus, the
semantics and operations of BDP will follow the current IPv4/IPv6.

2.2 DATA TRANSPORT PROCEDURES

In MOFI, data communications will be essentially performed only with HID, not LOC (IP address).
When a host will initiate a communication session with the corresponding host, it shall know the
HID of the corresponding host.

For discussion, we consider a simple communication scenario in which a sending host (SH) wants
to communicate to a receiving host (RH). If SH knows the HID of RH, the overall data transport
operations are performed, as shown in the figure below.

Figure 5 – Data transport procedures in MCP

 Mobility Control Protocol for MOFI

10

The data packet transport operations are summarized as follows:

1) Data transmission (SH AR)

SH sends the data packets to AR by using HID of RH. It is noted that SH does not need to
know the LOC of RH (that is, the IP address of AR that is attached to RH).

2) Query and encapsulation (AR of SH)

On reception of data packets from SH, the AR of SH will first identify the LOC of RH by using
the MCP protocol, which will be described later. Then, AR of SH will encapsulate the data
packets by adding the LOC of RH (IP address of AR of RH) into the outer header of the data
packet.

3) Packet delivery in the backbone network

The encapsulated data packets are delivered from AR of SH to AR of ER by using the current
IP routing/forwarding, possibly via one or more routers in the backbone network.

4) Decapsulation (AR of RH)

On reception of the encapsulated data packets, the AR of RH will extract the original data
packets by decapsulation, and then forward them to RH.

5) Data reception (AR RH)

Finally, the RH can receive the original data packets transmitted by SH.

 Mobility Control Protocol for MOFI

11

3. PROCEDURES

In MCP, the following mobility control operations are supported:

 HID Binding (HB) between host and AR;
 LOC Binding (LB) and LOC Query (LQ) between ACA and LBS;
 Handover Control (HC) between ACAs.

The HB operation is used to bind the LID and HID of a host with AR, whereas LB and LQ
operations are used to bind the LOC information of a mobile host to LBS and for a correspondent
host to query the HID of the mobile host, respectively. The HC operation is used to support
seamless handover when a mobile host moves on during communications.

3.1 HID BINDING (HB)

3.1.1 OPERATIONS

When a host is attached to the network, it will establish the network connection with the
concerned PoA via an appropriate link-layer connection establishment process. In this network
attachment process, a certain authentication and/or authorization may be performed between a
user and service provider, which is outside the scope of the MCP.

With the network attachment of host, the HID binding operation is required, in which HID and
LID of the host will be registered with AR attached to the host. AR will maintain and update its
cache table, called “HID Cache” (HC) that contains the information of bindings between HIDs and
LIDs for all of the hosts attached to the AR.

In MCP, we assume that the HID binding will be performed with the underlying ‘access link layer’
protocol, implicitly or explicitly, as shown in the figure below.

Figure 6 – HID binding between host and AR/PoA

In the implicit HID binding, the binding between HID and LID will be done during the underlying
link-layer attachment process. In the explicit HID binding, after the link setup, the AR may request
the HID information to the host explicitly by sending the HID query message (in multicast or
broadcast), and then the host will respond with its HID to AR (in unicast).

 Mobility Control Protocol for MOFI

12

3.1.2 HID CACHE (HC)

In the HID binding operation, AR maintains and updates its own HID cache by recording the HIDs
and LIDs associated with the hosts in the local subnet. The abstract format of the HID cache table
is shown below.

Table 1 – HID Cache (HC)

No. HID LID Link
Information

Status Type

1 HID1 LID1 … Idle Static
2 HID2 LID2 … Active Static
3 HID3 LID3 … Idle Mobile
4 HID4 LID4 … Active Mobile
5 … … … … …

The cache information will be referred to by AR for delivery of the data packets that are destined
to the hosts in the local subnet. In the table, the status field (idle or active) represents whether or
not the host is in the active data communication with a certain other corresponding host. That is,
‘active’ means the HID is bound to the network and also in communication with the other host(s),
while ‘idle’ implies that the host is bound but not in communication. In addition, the HC cache
may indicate the type of host (static or mobile), and the information associated with the link may
be used, (e.g., information of contact with the PoA of host, etc), which is for further study.

3.2 LOC BINDING (LB) AND LOC QUERY (LQ)

3.2.1 PROTOCOL MODEL

When a host is connected to AR, the corresponding ACA will bind the LOC and HID of host to LBS.
For data delivery, each ACA will contact with LBS so as to get the LOC information of the
corresponding host. Fig. 7 shows the protocol stack associated with LOC binding and query
between ACA and LBS.

MAC/PHY

ACA

Network

Transport

MCP

MAC/PHY

Network

LBS

Transport

MCP

MAC/PHY

Network

ACA

Transport

MCP

LOC
Binding &

Query

LOC
Binding &

Query

Figure 7 – Protocol model for LB and LQ between ACA and LBS

 Mobility Control Protocol for MOFI

13

3.2.2 LB OPERATIONS

When an AR detects a new host in its network region, its associated ACA shall perform the LB
operation by sending a LB Request (LBR) message to the LBS. The LBR message shall include the
HID and LOC of the host. LBS responds with the corresponding LB ACK (LBA) message to ACA.
This LB operation will be performed each time a host moves into a new AR area, as shown in the
figure below.

Figure 8 – LOC Binding Operations

3.2.3 LBS WITH LOC DATABASE (DB)

LBS is used to manage the LOC information of all of the users in the network. For this purpose,
LBS maintains the location database, which contains information of mapping between HIDs and
LOCs for all of the hosts.

When a host moves into a new AR, its ACA will perform the LOC Binding (LB) operation with LBS.
From this LB operation, HID and LOC of a host will be registered with LBS. Accordingly, LBS will
maintain the following Location DB, as shown in the table below.

Table 2 – LBS LOC Database

No. HID LOC Service Profile

1 HID1 LOC1 Related data

2 HID2 LOC2 Related data

3 … … …

 Mobility Control Protocol for MOFI

14

3.2.4 ACA WITH LOC CACHE (LC)

For data delivery, each ACA performs the LOC Query (LQ) operations with LBS. When a host
wants to communicate with another host, the associated ACA/AR will perform the LQ operation
with LBS so as to get the LOC of the corresponding HID. From this LQ operation, each ACA
maintains the LOC Cache (LC) for each of the corresponding (remote) HIDs, as shown in the table
below.

Table 3 – ACA LOC Cache (LC)

No. Remote HID Remote LOC

1 HID1 LOC1

2 HID2 LOC2

3 … …

3.2.5 LQ OPERATIONS

Now, let us assume that the corresponding host has completed its LB operation. For example, we
consider Sending Host (SH) with S-HID that sends data packets to the Receiving Host (RH) with R-
HID. In this phase, the AR of SH needs to perform the LQ operation with LBS. An example of data
delivery from SH to RH is illustrated in the figure below.

Figure 9 – Location Query for Data Delivery

 Mobility Control Protocol for MOFI

15

The data delivery procedures could be summarized as follows:

1) Initially, both SH and RH are bound to S-AR and R-AR by using the respective HBP protocols,
in which the associated HBP caches are updated with S-HID:S-LID and R-HID:R-LID. It is also
assumed that the LB operations for R-HID and R-LOC have been completed between R-ACA
and LBS.

2) SH sends an initial data packet to RH via its attached S-AR;
3) ACA/AR of SH will first look up its LOC Cache (LC) table to find the LOC of R-HID; if yes, S-AR

can deliver the data packet to the identified R-AR (R-LOC), which is not shown in the figure.
4) If ACA/AR of SH cannot find the LOC of R-HID in the ACA-LC table, it shall perform the LOC

Query operation by sending an LQR message to LBS. In response to the LQR message, the
LBS will lookup its Location DB to identify the R-LOC of R-HID, and then it sends the LQA
message to the ACA of SH. Based on the received LQA message, ACA of SH will update its LC
table by creating the entry for R-HID and R-LOC;

5) AR of SH will send the encapsulated data packets to the AR of RH (R-LOC);
6) On reception of the encapsulated data packets from AR of SH, the AR of RH extracts the

original data packets from the encapsulated packets. ACA of RH will update its LC table by
creating a new entry for S-HID and S-LOC. This is done for AR of RH to deliver the data
packets from RH to SH in the future.

7) Then, AR of RH forwards the data packets to RH. To do this, ACA of RH will lookup its HBP
cache to identify the LID of R-HID.

8) Up to now, the ACA-LC of SH and ACA-LC of RH have been constructed. Based on this
information, RH can also send data packets to SH. That is, RH (R-HID) and SH (S-HID) can now
exchange data packets by referring to the established HBP caches and ACA-LCs.

The following figure shows the abstract information flows of LB and LQ in the previous example.

Figure 10 – Location Binding and Query for data delivery

For data transport, the ACA-LC maintains the list of the corresponding (remote) hosts that the
local hosts are communicating with. On the other hand, HBP cache is used to forward the data
packets to the attached local hosts.

 Mobility Control Protocol for MOFI

16

3.3 HANDOVER CONTROL

For handover control, MCP uses the link-layer information such as Link-Up (LU), Link-Down (LD),
Link-Going-Down (LGD), and Link Coming-Up (LCU), which are defined in the IEEE 802.21 MIH. At
present, we will focus on the LU trigger only. The other triggers can also be examined to provide
seamless handover.

3.3.1 PROTOCOL MODEL

MCP is also used to support the fast handover for mobile hosts. Note that the MCP operates
based on the IEEE 802.21 Media Independent Handover (MIH) between host and AR, in which
appropriate link-layer triggers will be used such as Link-Up, Link-Down, Link-Coming-Up, and Link-
Going-Down.

Figure 11 – Handover Control Protocol with MIH

For handover control, the LOC Transfer (LT) operation is performed between the two
neighbouring ACAs associated with mobile host, and the LOC Update (LU) operation is used
between local ACA and remote ACA to update the LOCs in communication. The details of
handover control will be described in the subsequent section.

3.3.2 OPERATIONS

We first consider the following simple handover scenario in which Mobile Host (MH) is
communicating with Correspondent Host (CH), and it is moving from AR_old to AR_new.

Figure 12 –Handover scenario

 Mobility Control Protocol for MOFI

17

Based on the handover event, the handover control operations will be performed as follows.

Figure 13 – Handover control by MCP

1) We assume that CH and MH (in AR_old) are communicating before handover. By handover,
ACA_old (or ACA_new) of MH will get an LU trigger from the network. After that, ACA_old
will exchange LOC Transfer Request (LTR) and LOC Transfer ACK (LTA) messages with
ACA_new for handover control, which shall include the information of M-HID, C-HID, C-LOC.

2) AR_new of MH performs HBP with the newly attached MH, and the AR_new will update its
HBP cache table for MH.

3) Now, the ACA_new of MH sends the LOC Update Request (LUR) message to the ACA of CH.
On reception of the LUR message, ACA of CH will update its LC table with M-HID:M-LOC_old
to M-HID:M-LOC_new.

4) In response to the LUR message, the ACA of CH will send the LOC Update ACK (LUA)
message to the ACA_new of MH. On reception of the LUA message, the ACA_new updates its
LC table by creating the C-HID:C-LOC entry.

5) The data path is now changed to CH ↔ AR of CH ↔ AR_new of MH ↔ MH.

In addition, the ACA will perform the LB operation after handover, which is not shown in the
figures. This LB operation is for the newly incoming session to MH, which is performed
independently of the handover control.

 Mobility Control Protocol for MOFI

18

4. PACKETS

4.1 DATA PACKET

In MOFI/MCP, the HID is used for end-to-end communication between two hosts. This is NOT for
data delivery or routing. That is, the HID is not used for routing of data packets in the network.
Instead, it will be used for end-to-end communication using the upper layer transport layer
protocol (TCP/UDP) and a socket interface with an application program.

4.1.1 HEADER FORMAT

For design of data packet header format, we refer to the current IPv6 header format for
backward compatibility. Instead of the conventional IP header, each data packet has the
following header.

0

Version

Source HID (128 bits)

Payload Length

Upper Layer Protocol (TCP, UDP, SCTP, DCCP)

8 16 24 31

Reserved

Destination HID (128 bits)

ULP Reserved

Figure 13 – Header Format of Data Packet

Packet Field Description:

 Version (4 bits): indicates this version of MOFI, which may be used to make it compatible
with the current IP version;

 Reserved (12 bits): reserved for future use, and set to 0;
 Payload Length (16 bits): the length of user payload (in byte) following this FIP header;
 Upper Layer Protocol (8 bits): indicates the upper layer protocol such as TCP, UDP, etc.
 Reserved (8 bits): reserved for future use, and set to 0;
 S-HID (128 bits): Source HID
 D-HID (128 bits): Destination HID.

 Mobility Control Protocol for MOFI

19

4.1.2 ENCAPSULATION

For data delivery, the data packet will be encapsulated into the ADP in the host side and the BDP
in the AR side for data delivery, as shown in the figure below. The ADP header contains the Link
IDs of host and AR, whereas IP (BDP) header includes the two IP addresses (LOCs) of ARs, as
done in the current IPv4/IPv6.

Data Header
(S-HID, D-HID) DataUpper-layer

Headers
IP Header

(S-LOC, D-LOC)

ADP between Host and AR

IP between ARs

Data Header
(S-HID, D-HID) DataUpper-layer

Headers
ADP Header

(H-LID, AR-LID)

Figure 14 – Structure of data packets

4.2 MCP PACKETS

4.2.1 PACKET FORMAT

The overall packet structure of MCP packet is shown below.

7 15 23 310

Reserved

HID (128 bits)

LOC (e.g., IPv4 or IPv6 address of AR)

Packet Type LOC Length

 Figure 15 – Abstract Format of MCP Packets

Packet Field Description:

 Packet Type (8 bits): indicates the type of MCP packet, which will be described later;
 Reserved (16 bits): reserved for future use;
 LOC Length (8 bits): the length of LOC in byte (4 for IPv4, 16 for IPv6);
 HID (128 bits): Host ID;
 LOC (4 or 16 bytes): Locator (IPv4 or IPv6 address of AR).

 Mobility Control Protocol for MOFI

20

4.2.2 PACKET TYPES

The following table shows the list of the packets used for MCP.

Table 4 – Types of MCP Packets

Packet
Type

Full Name From To

LBR LOC Binding Request ACA LBS
LBA LOC Binding ACK LBS ACA
LQR LOC Query Request ACA LBS
LQA LOC Query ACK LBS ACA
LTR LOC Transfer Request ACA ACA
LTA LOC Transfer ACK ACA ACA
LUR LOC Update Request ACA(local) ACA(remote)
LUA LOC Update ACK ACA(remote) ACA(local)

 Mobility Control Protocol for MOFI

21

5. IMPLEMENTATIONS

5.1 NETFILTER

Netfilter is a framework that provides hook handing for packet mangling, outside the normal
Berkeley socket interface. The netfilter is invoked, for example, by the packet reception and send
routines from/to network interfaces. As the master netfilter function, which is nf_hook(), is called
with a packet, netfilter run through the list of registered hooks and calls the extensions in
succession, which then handle packets as they desire. And that consists of four parts.

Firstly, each protocol defines “hooks” which are well-defined points in a packet’s traversal of that
protocol stack. At each of these points, the protocol will call the netfilter framework with the
packet and the hook number.

Secondly, parts of the kernel can register to listen to the different hooks for each protocol. So
when a packet is passed to the netfilter framework, it checks to see if anyone has registered for
that protocol and hook; if so, they each get a chance to examine and possibly after the packet in
order, then discard the packet (NF_DROP), allow it to pass (NF_ACCEPT), tell netfilter to forget
about the packet (NF_STOLEN), or ask netfilter to queue the packet for userspace (NF_QUEUE).

The third part is that packets that have been queued are collected by the ip_queue driver for
sending to userspace which these packets are handled asynchronously.

The final part consists of cool comments in the code and documentation. This is instrumental for
any experimental project. In addition to this raw framework, various modules have been written
which provide functionality similar to previous kernels, in particular, an extensible NAT system,
and an extensible packet filtering system (iptables).

5.1.1 NETFILTER ARCHITECTURE

Figure 16– Netfilter Architecture in Linux Kernel

 Mobility Control Protocol for MOFI

22

The Netfilter has five hooks in Linux kernel which are NF_IP_PRE_ROUTING, NF_IP_LOCAL_IN,
NF_IP_FORWARD, NF_IP_LOCAL_OUT, NF_IP_POST_ROUTING.

Firstly, on the left is where packets come in ip_rcv that have passed the simple sanity checks, for
example, not trusted, IP checksum OK, not a promiscuous receive, they are passed to the
netfilter framework’s NF_IP_PRE_ROUTING hook.

Next, they enter the routing code, which decides whether the packet is destined for another
interfaces, or a local process. The routing code may drop packet that are unroutable.

If it is destined for the box itself, the netfilter framework is called again for the NF_IP_LOCAL_IN
hook, before being passed to the process.

If it is destined to pass to another interface instead, the netfilter framework is called for the
NF_IP_FORWARD hook.

The packet then passes a final netfilter hook, the NF_IP_POST_ROUTING hook, before being put
on the wire again.

The NF_IP_LOCAL_OUT hook is called for packets that are created locally. Here you can see that
routing occurs after this hook is called, in fact, the routing code is called first to figure out the
source IP address and some IP options. If we want to alter routing, we must alter the ‘skb->dst’
field ourselves, as is done in the NAT code.

Table 5 – Netfilter Hooks

Hook Description
NF_IP_PRE_ROUTING Process all packet received network interface

NF_IP_LOCAL_IN Only process packet to be sent to local machine
NF_IP_FORWARD Only process forwarding packet

NF_IP_LOCAL_OUT Only process packet to send another machine
NF_IP_POST_ROUTING Process all packet to send another machine including forwarding packet

5.1.2 NETFILTER PACKET FILTERING TYPE

Now we have an example of netfilter for IPv4, we can see when each hook is activated. This is the
essence of netfilter.

Kernel modules can register to listen at any of these hooks. A module that registers a function
must specify the priority of the function within the hook. And then, when the netfilter hook is
called from the core networking code, each module registered at that point is called in the order
of priorities, and is free to manipulate the packet. The module can then tell netfiter to do one of
five things.

1) NF_ACCEPT: Continue traversal as normal.

2) NF_DROP: Drop the packet. Do not continue traversal.

3) NF_STOLEN: Have taken over the packet. Do not continue traversal.

4) NF_QUEUE: Queue the packet (usually for userspace handling).

5) NF_REPEAT: Call this hook again.

 Mobility Control Protocol for MOFI

23

5.1.3 HOW TO USE NETFILTER

The netfilter is kernel module. So, we register the netfilter that is needed to use the init_module()
function. And we unregister the netfilter that is needed to use the cleanup_module(). There are
some examples are shown below.

Figure 17– init_module() function

Figure 17 shows the example of init_module() function. In general, there are two hooks in the
init_module() function, because of separating input and output hook. First, we define the hook
name is likely to ‘input_handler’ and ‘output_handler’ in the figure. And then, we define the
protocol family at the pf. Finally, the most important is hook number that determine the hook
what we use, for example, NF_IP_LOCAL_IN and NF_IP_LOCAL_OUT in the figure. The hook
number is defined in advance at the netfilter.h that exist in ‘/usr/src/linux-2.6.32.16/include/linux/’
directory.

 Figure 18– cleanup_module() function

Figure 18 shows the example of cleanup_module() function. The nf_unregister_hook() function
unregister the netfilter hooks that are registered in the init_module() function.

 Mobility Control Protocol for MOFI

24

5.2 IMPLEMENTATION ENVIRONMENTS

Table 6 – Implementation Environments

Subject Version
Operating

System
Ubuntu Linux 9.04 desktop

Binding Request
Kernel Linux kernel 2.6.32.16

Compiler GCC 4.3.3

To implement the MOFI Mobile Control Protocol, we use the operating system which is the
Ubuntu linux 9.04 desktop edition i386 version. And we used the linux kernel 2.6.32.16 that was
the latest stable kernel when we started this implementation. The compiler is the GNU Complier
Collection (GCC) compiler of which version is 4.3.3. And we make the make file to build kernel
module because that need to add the kernel library function. That is shown below.

Figure 19– Makefile to build kernel

And we use the socket buffer functions in the skbuff.h that exists in ‘/usr/src/linux-
2.6.32.16/include/linux’ directory. For example, skb_push() function is used. It adds data to the
start of a buffer and extends the used data area of the buffer at the buffer start. If this would
exceed the total buffer headroom the kernel will panic. A pointer to the first byte of the extra
data is returned.

Figure 20– skb_push() function

And skb_pull() is remove the data from the start of a buffer, returning the memory to the
headroom. A pointer to the next data in the buffer is returned. Once the data has been pulled,
future pushes will overwrite the old data.

Figure 21– skb_pull() function

Another function is skb_copy_expand() which makes a copy of both an socket buffer and its data
and while doing so allocate additional space. This is used when the caller wishes to modify the

 Mobility Control Protocol for MOFI

25

data and needs a private copy of the data to alter as well as more space for new fields. Returns
NULL on failure or the pointer to the buffer on success. The returned buffer has a reference
count of 1.

Figure 22– skb_copy_expand() function

To use netfilter, we must compile the linux kernel. That is out of scope this document. So we do
not mention it.

5.3 HOST SIDE

To deliver the data packet between the host and AR, we implement the host protocol stack that
is shown below.

Figure 20 – Data Delivery Protocol Stack in Host

In the host, there are several protocol stack which are MAC/PHY, netfilter, ADP, HID, App/Trans.
To modify the protocol stack of host, we use the netfilter and add the two protocol stacks which
are ADP layer and HID layer. To achieve this, we modify the network layer in the existed protocol
stack. And we have two assumptions easy to implement. First, the HID is globally unique IPv6
address, because we reuse the IPv6 application and consider the backward compatibility.
Second, the LID is IPv6 link local address.

5.3.1 DATA HEADER

To implement the MOFI MCP protocol, we define the data (HID) header in the system that is
shown below.

 Mobility Control Protocol for MOFI

26

Figure 21– Data Header Structure

We refer the IPv6 header file to define the HCP header file, because there are so many similar
architecture to reuse of existed Socket API, for example, we suppose the source and destination
HID is IPv6 address.

5.3.2 SENDER

The sender uses NF_IP_LOCAL_OUT of netfilter hook to attach the data header between
Transport layer header and IP header (ADP header). So, we check whether the Transport layer
header and IP header exist or not. At the result, both the IP header and the Transport layer
header are existed in the packet from the upper layer that is a transport layer. And then, the
packet is separated IP header and Transport layer header by socket buffer functions such as
skb_xxx(). We allocate the memory to define the data header. After then, we add the data
header between the IP header and Transport layer header.

Data Header
(S-HID, D-HID) DataUpper-layer

Headers
ADP Header

(H-LID, AR-LID)

Before processing the packets

After processing the packet

DataUpper-layer
Headers

ADP Header
(H-LID, AR-LID)

Figure 22 – Process packet in send host

5.3.3 RECEIVER

The receiver uses NF_IP_LOCAL_IN of netfilter hook to remove the HCP header between TCP
header and IP header. So, we check whether the Transport layer header and IP header exist or
not. At the result, both the IP header and the Transport layer header are existed in the packet
from the network layer. And then, the packet is separated IP header and Transport layer header

 Mobility Control Protocol for MOFI

27

by socket buffer functions such as skb_xxx(). We remove the data header. After then, we remove
the space of the data header as the pointer of IP header moves.

Figure 23 – Process packet in receive host

5.4 ACCESS ROUTER SIDE

To deliver the data packet between the ARs, we implement the AR protocol stack that is shown
below.

Figure 24 – Data Delivery Protocol Stack in AR

In the figure, the left side is a sender, on the other hand, the right side is a receiver. In the AR,
there are several protocol stacks which are MAC/PHY, netfilter, ADP, BDP. To modify the protocol
stack of AR, we use the netfilter and add the two protocol stacks which are ADP layer and BDP
layer. To achieve this, we modify the network layer in the existed protocol stack such as packet
translator which has a dual stack. And we have an assumption that the LOC is used over IPv4
network, because the backbone network is classified access network to use the IPv6 network.

5.4.1 SENDER

The sender uses NF_IP_POST_ROUTING of netfilter hook to translate from the IPv6 header (ADP
header) to IPv4 header (BDP header). So, we check whether the Transport layer header, HCP
header and IP header exist or not. At the result, all the headers are existed in the packet from the
host. And then, the packet is translated from ADP header to BDP header. To achieve this, we use
the socket buffer functions such as skb_xxx(), And then, we allocate memory to use the BDP
header and attach it to the packet and remove the remainder space in the packet.

 Mobility Control Protocol for MOFI

28

Figure 25 – Process packet in send AR

5.4.2 RECEIVER

The receiver uses NF_IP_PRE_ROUTING of netfilter hook to translate from the IPv4 header (BDP
header) to IPv6 header (ADP header). So, we check whether the Transport layer header, HCP
header and IP header exist or not. At the result, all the headers are existed in the packet from the
host. And then, the packet is translated from BDP header to ADP header. To achieve this, we use
the socket buffer functions such as skb_xxx(), And then, we allocate memory to use the ADP
header and extend the packet to attach it.

Figure 26 – Process packet in receive AR

 Mobility Control Protocol for MOFI

29

REFERENCES

[1] Mobile Oriented Future Internet (MOFI), http://www.mofi.re.kr/
[2] IETF Host Identity Protocol (HIP) WG, http://www.ietf.org/html.charters/hip-charter.html
[3] IETF RFC 4843, An IPv6 Prefix for Overlay Routable Cryptographic Hash Identifiers (ORCHID),

April 2007
[4] IETF RFC 3775, Mobility Support in IPv6, June 2004
[5] IETF RFC 5213, Proxy Mobile IPv6, August 2008
[6] Linux Netfilter Hacking HOWTO, July 2002

ABBREVIATIONS

ACA Access Control Agent
ADP Access Delivery Protocol
AR Access Router
BDP Backbone Delivery Protocol
DB Database
FI Future Internet
HB HID Binding
HC HID Cache
HID Host Identifier
IP Internet Protocol
LID Link ID
LB LOC Binding
LBS LOC Binding System
LC LOC Cache
LOC Locator
LQ LOC Query
MCP Mobility Control Protocol
MIP Mobile IP
MOFI Mobile-Oriented Future Internet
PoA Point of Attachment

 End of Document

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

