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Abstract—Generally only individual regions suffer bit errors as a 
packet travels a lossy channel. At the receiver side, however, the 
entire packet has to be discarded even if only one bit is erased. 
This may result in degradation of the throughput performance of 
Stream Control Transmission Protocol (SCTP) over wireless 
networks with high bit error rate. This paper proposes a dynamic 
partial Cyclic Redundancy Check (CRC) scheme with flexible 
chunk policy to enhance SCTP performance. In the scheme, a 
packet can be partitioned into different regions based on the 
measured end-to-end packet corruption rate and each region can 
have its own individual checksum item. With the help of the 
checksum items, the receiver can discard the corrupted portion 
only and those available chunks can be recovered. Simulation 
results show that the performance gain of the proposed scheme 
could be significant in worse-case scenarios, compared to the 
standard SCTP. 

Keywords-SCTP; corruption; checksum; partial CRC;  wireless 
networks 

I.  INTRODUCTION 
The Stream Control Transmission Protocol (SCTP) [1] is 

originally designed for signaling messages over IP networks, 
and now has been extended as a general-purpose reliable 
transport layer protocol. Differently from Transport Control 
Protocol (TCP) which follows the strict byte-order delivery 
policy, the SCTP natively supports multiple chunks per packet 
and each data chunk in an association is assigned a unique 
transmission sequence number (TSN). That is, chunk is the 
information unit in SCTP, but not byte. 

On the other hand, the SCTP is designed based on the 
window-based error and congestion control [1, 2]. As done in 
TCP, a corrupted packet is regarded as a lost one and thus 
induces the retransmission request as well as the decrease of 
the congestion window (cwnd) at the sender side. Moreover, 
the unwanted timeout will be incurred inevitably once the 
retransmitted packet suffers random bit errors. This will cause 
the further degradation of SCTP throughput over wireless 
networks with high bit error rate (BER). 

Several works have been done to improve the SCTP 
throughput performance against corruption. The work in [3] 
introduces a MAC-Error-Warning (MEW) method with a new 
type of MAC (Medium Access Control) packet. The MEW 
method is similar to the Automatic Request (ARQ) mechanism, 

but a special MAC packet is generated at the MAC layer before 
the data chunk is discarded, which contains detailed 
information (including the stream ID and the sequence number) 
to notify the upper layer of the failed transmission. Arriving at 
the transport layer, the MEW packet will be analyzed by the 
SCTP source and all the useful information will be recovered 
so as to trigger a fast retransmission of the chunk without 
degrading the congestion window. The work in [4] utilizes the 
ECN (Explicit Congestion Notification) indications to detect 
the non-congestion packets loss. Therefore, a packets loss 
without simultaneous ECN message in the same data window 
will be regarded as non-congestion errors. In this case, a simple 
loss-recovery procedure can be executed without applying the 
normal congestion control mechanism.  

Moreover, with the rapidly increased usage of wireless 
devices all over the world, the faster and cheaper link level 
(e.g., 802.11) mechanisms have tended to be simple (e.g., 
802.11's ARQ mechanism). This trend results in a high and 
variable residual erasure rate (e.g., 10-50% erasure rate 
observed by [6]) that needs to be ultimately handled end-to-
end [5].  

It is noted that an SCTP segment can carry multiple chunks, 
but only one overall checksum is contained in its common 
header. On reception of an SCTP segment, if the checksum 
field indicates a corruption, the entire segment will be 
discarded no matter how many chunks are carried and whether 
or not all of them are corrupted. When corruption occurs only 
in individual chunks, however, if the receiver can recover the 
available ones from the corrupted segment, the sender may 
reduce the retransmission amount and avoid the unnecessary 
behaviors of both halving congestion window and unwanted 
timeouts. The precondition is that the sender can identify which 
ones are corrupted. 

In this paper a dynamic partial Cyclic Redundancy Check 
(CRC) with flexible chunk policy is proposed to enhance the 
SCTP performance by dynamically adding a checksum chunk. 
In the scheme, once a sender affirms that its peer also supports 
the optional partial CRC checksum scheme (this is done by 
exchanging INIT/INIT-ACK chunks in the association 
establishment phase), the sender can dynamically partition a 
packet into one or more regions and withdraw/insert the partial 
CRC checksum chunk from/into the SCTP segments, based on 
the measured end-to-end packet corruption rate.  
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Figure 1.  Format of Checksum Chunk 

On the other hand, if the overall checksum in the common 
header fails at the receiver side, the SCTP receiver will check 
whether there is the optional checksum chunk or not. If yes, 
each partial CRC checksum item contained in the checksum 
chunk will be verified in turn. As a result, those available 
chunks can be recovered from the corrupted packet. Further, 
the associated TSNs will be reported to the sender via the 
subsequent SACK chunks so as to trigger the fast 
retransmission without shrinking the congestion window at the 
sender side. 

The rest of this paper is organized as follows. Section II 
briefly represents some extended and newly defined chunks. In 
Section III, we describe the error and congestion controls based 
on the dynamic partial checksum scheme. Section IV shows 
some simulation results using the ns-2 networks simulator. 
Finally, we conclude this paper in Section V. 

II. EXTENSIONS OF SCTP CHUNKS 
We present the suggestion on dynamic partial CRC 

checksum with flexible chunk policy according to the 
following considerations. That is, generally only individual 
regions suffer bit errors as a packet travels a lossy channel. At 
the receiver side, however, the entire packet has to be discarded 
even if only one bit is erased, since the existing CRC 
mechanisms perform an overall checksum calculation. 
Nevertheless, for the environments with high BER, we may 
reduce the retransmission amount as much as possible if we 
apply dynamic partial CRC since only the corrupted portion 
will be discarded and those available chunks can be recovered. 
Thus the dynamic partial CRC mechanism may perform better 
than the overall checksum scheme under worse-case channel 
condition. For this purpose, the format of SACK chunk is 
extended, and a checksum chunk and an optional parameter 
(for both INIT and INIT-ACK chunks) are newly defined. 

A. Optional parameter for both INIT and INIT-ACK Chunks 
The dynamic partial CRC with flexible chunk policy is 

suggested in this paper as an optional choice of the standard 
SCTP. Therefore, in the association establishment phase, the 
source and the destination have to affirm whether or not to 
support the optional partial CRC checksum chunk over the 
association. This can be done by exchanging a newly defined 
optional parameter (e.g. “13”) for this purpose, using the SCTP 
INIT and INIT-ACK chunks.  

B. Proposed Checksum Chunk 
The proposed optional partial CRC checksum chunk obeys 

the chunk specifications defined in RFC2960 [1]. As an 
example, Fig. 1 illustrates the proposed format of the chunk. 

In the figure, each checksum item consists of the 4-byte 
checksum value field and the 2-byte coverage field, which is a 
total 6-byte in length. More specifically, the coverage range of 
each checksum item can be obtained as per the following 
formulas: 

left_edge1 = 0                                                           (1) 

right_edgei=left_edgei+coverage_lengthi-1            (2) 

left_edgei = right_edgei-1 + 1          (i>1)                 (3) 

where i = 1, 2, …n, and n is the number of the partial checksum 
items contained in the checksum chunk. 

With the help of the partial checksum items, the sender can 
dynamically adjust the chunk size and number for the pending 
forward packets, depending on the measured packet corruption 
rate. At the receiver side, the receiver can recover the most 
available chunks and report the corruption event to the sender. 
In this way, the proposed scheme can reduce the retransmission 
amount and avoid the significant performance degradation 
from the strong corruption. 

C. Extended SACK Chunk 
When a checksum chunk is extracted from a segment at 

receiver side, the receiver has to check each partial checksum 
item if the default overall checksum fails. Once individual 
corrupted chunks are picked out, the associated TSNs and 
timestamp need to be appended in the end of the subsequent 
SACK chunk.  

It is noted that for each segment with single data chunk, an 
associated corruption item is composed of a corruption TSN 
and a corresponding timestamp (‘explicit corruption item’), 
which is used to explicitly report a corrupted chunk to the 
sender. As opposed to the explicit corruption item, the 
checksum item for the corrupted segment with multiple data 
chunks consists of either the first erased chunk’s TSN while all 
data chunks are corrupted or all available chunks’ TSNs if any 
chunks are recovered (‘implicit corruption item’). Therefore, 
on extraction of an implicit corruption item from a SACK 
chunk, the sender needs to infer which unacknowledged packet 
possesses these chunks. Of course, the other chunks in the same 
packet must be corrupted if the recovered chunks’ number is 
not zero. Technically, it is easy to pick out the corrupted 
chunks from a multiple data chunks’ segment because the 
sender preserves the contents of all outstanding packets till they 
are acknowledged. 

Figure 2 shows the example format of the extended SACK 
chunk recommended in this paper. 

III. ERROR AND CONGESTION CONTROLS 

A. Data Transmission 
At the beginning of data transmission phase, the sender can 

assemble optional checksum chunk as well as one or more data 
chunks into segments based on the negotiation using 
INIT/INIT-ACK chunks. However, each segment’s structure 
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Figure 2.  Format of the extended part of SACK chunk 

 

 

Figure 3.  Flowcharts of processing checksum chunk 

 

Figure 4.  Flowchart of processing SACK chunk 

might not be changeless. The sender can adjust the chunk size 
and the number depending on the measured packet’s corruption 
rate. For example, when the packet corruption rate decreases 
down to a lower threshold below, the checksum chunk can be 
withdrawn and one data chunk’s payload is recommended; 
whereas if the packet corruption rate exceeds a higher 
threshold, both checksum chunk and multiple data chunks’ 
payload are preferred. 

B. Detection of Corruption Events 
On reception of an SCTP segment, the receiver will first 

verify the integrity of the whole SCTP segment by checking 
the overall checksum of the common header. In case that the 
segment is corrupted, the receiver will then verify each partial 
checksum in turn if the checksum chunk is carried.  

In particular, once checking a partial checksum fails, if it is 
the first one, the receiver has to discard the whole segment 
since the header portion may contain some wrong information. 
On the other hand, if the first partial checksum is proven to be 
valid, the subsequent partial checksums, if any, will be checked 
in sequence. For each of the subsequent partial checksums 
(only for the segment with multiple data chunks), if it is proven 
to be valid, the corresponding data chunk can be recovered 
from the corrupted segment. The detailed processing procedure 
of data packet is illustrated in Figure 3. 

C. Generation of SACK Chunk for Corruption 
After checking all of partial checksums, the SCTP receiver 

will construct a subsequent SACK chunk immediately, in 
which the associated TSNs and timestamp will be appended in 
the end as shown in Figure 2. In particular, if a single data 
chunk’s segment is corrupted, an explicit corruption item will 
be appended; otherwise if the corrupted segment contains 
multiple data chunks, an implicit corruption item is needed. 
Wherein, the timestamp indicates when the corruption is 
detected at the receiver side. Therefore, even for the same TSN, 
a renewed timestamp implies a new corruption event, and thus 

requests another prompt retransmission. This allows the sender 
can retransmit the same chunk for multiple times before the 
retransmission timer expires. Consequently, it can let the 
sender avoid the unwanted timeouts which might be induced in 
conventional SCTP in case that the retransmitted chunks suffer 
random bit errors in wireless channel. 

D. Error and Congestion Controls 
In the standard SCTP, both lost and corrupted chunks are 

retransmitted by either the timer-based retransmission or the 
fast retransmission. In the proposed scheme, however, the 
corrupted chunk can be processed differently from the lost one 
since the corruption itself indicates an explicit retransmission 
request. 

By comparing the history records with the corruption items 
enclosed in the end of a SACK chunk, the sender can easily 
infer whether a corruption item is to report a new corruption 
event. If the sender determines that a corruption item reports a 
new corruption, it will retransmit the corrupted chunks 
immediately without deflating its congestion window. 

Figure 4 shows the flowchart of processing a SACK chunk 
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Table II. Packet structure and drop rates 

Packet  
drop rate 

Packet Structure 
Data Chunk  

Number 
Checksum 
Chunk Size 

Data Chunk 
 Size Packet Size 

58β/1498 1 10 1456 1498 

70β/1494 2 22 720 1494 

82β/1490 4 34 356 1490 

94β/1494 6 46 236 1494 

106β/1498 8 58 176 1498 

118β/1462 10 70 136 1462 

Table I. Parameters used for two-state error model 

State Average Period Transition Probability Packet corruption 
Rate 

Good t1=0.5 seconds p=0.5, (1-p)=0.5 λ= 0 

Bad t2=0.5 seconds (1-q)=0.5, q=0.5 β =0.1~50% 

 

Figure 5.  Goodputs with differentβ values 

by the sender. In the figure, when the sender receives a SACK 
chunk, it first checks whether there are any corruption items. If 
no, the sender processes it as normal. If any, the sender further 
determines whether the first item reports a new corruption 
event. If it does, then the sender records the corrupted TSNs 
and timestamp for prompt retransmission. Otherwise the sender 
simply ignores it and continues to check the next one. 

By tracing the measured packet corruption rate, the sender 
can adjust its chunk policy in time. For example, a packet can 
carry one or more data chunks depending on the different 
corruption levels, or the sender can withdraw the partial 
checksum chunk from the data chunks if the corruption rate is 
teeny. All of the behaviors are simply and repeatable since the 
partial CRC checksum chunk is proposed as an option of the 
standard SCTP. In this way, the proposed scheme can 
significantly improve the throughput performance of SCTP 
over wireless network with a high BER. 

IV. SIMULATION RESULTS 
We evaluate the proposed scheme using the ns-2 network 

simulator (version 2.30) [7] with the simple test topology, in 
which two endpoints communicate directly through a single 
path that has the bandwidth of 2 Mbps and the transmission 
delay of 35ms. In each experiment, we perform the file transfer 
application over SCTP for 200 seconds and compare the 
goodputs (Kbps) of the standard SCTP with those of the 
proposed scheme in the cases that every packet carries 1, 2, 4, 
6, 8, 10 data chunks, respectively. 

To emulate packet corruptions, a two-state error model is 
modified to add a corruption flag in every corrupted packet’s 
header instead of dropping it.  

In the model, two states of ‘good’ and ‘bad’ are expressed 
in terms of average error rates λ and β, transition probabilities p 
and q, and average ‘good’ period of t1 seconds and ‘bad’ 

period of t2 seconds. If the link is in a ‘good’ state at present, it 
will continue to stay in the ‘good’ state with probability p, or 
transfer to the ‘bad’ state with a probability 1-p at the next 
instance. Also, if the link is in a ‘bad’ state at the current 
instance, then it will continue to stay in the ‘bad’ state with 
probability q, or transfer to the ‘good’ state with a probability 
1-q at the next instance. When the link is in the ‘bad’ state, a 
SCTP segment experiences a packet corruption in the network 
with the probability β. Table I summarizes the parameter 
values used for the error model. 

Notice that in the experiments, the standard SCTP uses the 
fixed-size data chunk (1468 bytes) and each packet carries only 
one data chunk. Thus every packet has a fixed 1500-byte in 
size. Moreover, since the standard SCTP regards the corruption 
as loss, all corrupted packets are forcedly dropped by the 
receiver. Therefore, the packet drop rate is equal to β in bad 
states for the standard SCTP. 

On the contrary, the proposed scheme performs the 
experiments using various-size data chunks. The detailed 
packet structure information is shown in Table II. Furthermore, 
in order to emulate the scenarios where bit errors occur in the 
header portion of SCTP packets, the packet drop rate of bad 
state is set to the proportion of the header size over the packet 
size. In this paper, the header scope covers IP header, SCTP 
common header, checksum chunk and the first data chunk’s 
header. When header is corrupted, all data chunks cannot be 
recovered. The detailed packet drop rate is also given in Table 
II. Also, we assume in this paper that only one data chunk 
suffers bit errors in every corrupted packet. 

The simulation results are shown in Fig. 5. In the figure, the 
horizontal axis denotes the packet corruption rate ranged from 
0.1% to 50% (that is β value in bad state of the two-state error 
model) and vertical axis indicates the goodput that is calculated 
based on the Cumulative TSN of the final SACK chunk. 

From Fig. 5 we can see that the standard SCTP gives the 
higher goodputs over the proposed scheme when the packet 
corruption rate (β value) is smaller than 1.5% roughly. This is 
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because when β is smaller, the proposed scheme keeps a large 
transmission window unchanged since there is no corruption 
occurs in packet header. This will sometimes incur the 
receiving buffer blocking problem at receiver side. 

Beyond that point, the proposed scheme starts to appear its 
advantages and outperforms the standard SCTP. Such 
performance gain is anticipated since the proposed scheme can 
recover most available payload form the corrupted packets and 
can decrease its cwnd only when corruption occurs in packet 
header portion. Whereas the standard SCTP interprets all 
corruption events as the indication of network congestion in 
the same way and blindly halves its cwnd repeatedly.  

However, through comparing the different behaviors of the 
checksum chunk with various-size data chunks, we find that 
too many data chunks (e.g., more than three) may result in 
some undesirable side effects, such as 1) overhead caused by 
too huge checksum chunk as well as too many chunk headers, 
2) much serious receiving buffer blocking problems and 3) 
raised packet loss rate incurred by header corruption. This will 
waste the more available bandwidth and decrease the 
transmission efficiency.  

V. CONCLUSIONS 
In this paper, we propose a dynamic partial CRC checksum 

chunk with flexible chunk policy to enhance the SCTP 
throughput performance under the environments with high 
BER. From the simulation results, we can see that applying the 
proposed checksum chunk could provide a significant 
throughput performance gain over the standard SCTP when 
the packet corruption rate is high. 

The performance gain of the proposed scheme comes from 
the following features: Firstly, the proposed scheme can 
recover the available data chunks from the corrupted packet so 
as to reduce the retransmission amount as much as possible. 
Secondly, by comparing the history records with the corrupted 
TSN as well as the corresponding timestamp enclosed in the 

end of SACK chunk, the proposed scheme can exploit a robust 
retransmission policy to avoid the unwanted timeouts which 
might be induced in conventional SCTP. Thirdly, the proposed 
scheme can distinguish the chunk corruptions from the chunk 
losses by using additional checksum chunk. Hence, it can avoid 
unnecessary deflation of the congestion window in the face of 
packet corruption. 
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