

Sessions by VolumeSessions by Volume
Volume 4: Network Technologies (2)

Sensor Networks ❑

Network Protocol, Traffic Analysis and Congestion Control ❑

Click on a session for a list of papers.

Main Menu

Volumes

Sessions

Authors

Papers by SessionPapers by Session
Network Protocol, Traffic Analysis and
Congestion Control

A MAP-Controlled Load Balance Scheme for Hierarchical
Mobile IPv6
Wei Zhou, Peilin Hong, Hancheng Lu and Kaiping Xue

❑

An IPv4-IPv6 Translation Mechanism for IMS Network
Xiaofa Liu, Xinzhou Cao and Huan Li

❑

A New Mobile IP Architecture and Routing Mechanism
Zhijun Yang, Min Zhang and Yinghua Cai

❑

A Novel Analytical Approach to the Handoff Management for
Hierarchical Mobile IP
Lier Bao, Jiaolong Wei and Zezhou Luo

❑

A Communication Model on Solving Anycast Scalability in
IPv6
Xiaonan Wang

❑

Mobile IPV6: Simultaneous and Consecutive Mobility
Experiments on MIPL Testbed
S. R. Azzuhri, S. Suhaimi, K. Daniel Wong and Norfizah Md. Ali

❑

A Network-Based Mobility Management Scheme
Ping Dong, Shuigen Yang and Hongke Zhang

❑

Click on a title to see the paper.

Main Menu

Volumes

Sessions

Authors

Papers by SessionPapers by Session
Improving TFRC Performance against Bandwidth Change
during Handovers
Dagang Li, Kristof Sleurs, Emmanuel Van Lil and Antoine Van de Capelle

❑

TCP Veno Connection Game Model on Non-Cooperative
Game Theory
Huibin Feng, Shunyi Zhang, Chao Liu, Qin Zhou and Ming Zhang

❑

Dynamic Partial CRC with Flexible Chunk Policy for SCTP
over Lossy Channel
Lin Cui and Seok J. Koh

❑

Analysis and Research on the Traditional Congestion
Control Policy and Active Networks Congestion Control
Policy
Chong Liu, Yanjuan Zheng, Xiuming Zhao, Zhiqiang He and Wenguang An

❑

Research on TCP Protocol in Wireless Network and
Network Simulation
Fu Lin, Xuefei Li and Wenhai Li

❑

Research on TCP Acknowledgement Mechanism in the
Multi-Hop Wireless Network
Jian Peng and Haigang Gong

❑

A Congestion Control Algorithm of Fuzzy Control in Routers
Changbiao Xu and Fengfeng Li

❑

Click on a title to see the paper.

Main Menu

Volumes

Sessions

Authors

Dynamic Partial CRC with Flexible Chunk Policy
for SCTP over Lossy Channel

Lin Cui
Department of Computer Science
Kyungpook National University

Daegu, Korea
cuilin@cs.knu.ac.kr

Seok J. Koh
Department of Computer Science
Kyungpook National University

Daegu, Korea
sjkoh@knu.ac.kr

Abstract—Generally only individual regions suffer bit errors as a
packet travels a lossy channel. At the receiver side, however, the
entire packet has to be discarded even if only one bit is erased.
This may result in degradation of the throughput performance of
Stream Control Transmission Protocol (SCTP) over wireless
networks with high bit error rate. This paper proposes a dynamic
partial Cyclic Redundancy Check (CRC) scheme with flexible
chunk policy to enhance SCTP performance. In the scheme, a
packet can be partitioned into different regions based on the
measured end-to-end packet corruption rate and each region can
have its own individual checksum item. With the help of the
checksum items, the receiver can discard the corrupted portion
only and those available chunks can be recovered. Simulation
results show that the performance gain of the proposed scheme
could be significant in worse-case scenarios, compared to the
standard SCTP.

Keywords-SCTP; corruption; checksum; partial CRC; wireless
networks

I. INTRODUCTION
The Stream Control Transmission Protocol (SCTP) [1] is

originally designed for signaling messages over IP networks,
and now has been extended as a general-purpose reliable
transport layer protocol. Differently from Transport Control
Protocol (TCP) which follows the strict byte-order delivery
policy, the SCTP natively supports multiple chunks per packet
and each data chunk in an association is assigned a unique
transmission sequence number (TSN). That is, chunk is the
information unit in SCTP, but not byte.

On the other hand, the SCTP is designed based on the
window-based error and congestion control [1, 2]. As done in
TCP, a corrupted packet is regarded as a lost one and thus
induces the retransmission request as well as the decrease of
the congestion window (cwnd) at the sender side. Moreover,
the unwanted timeout will be incurred inevitably once the
retransmitted packet suffers random bit errors. This will cause
the further degradation of SCTP throughput over wireless
networks with high bit error rate (BER).

Several works have been done to improve the SCTP
throughput performance against corruption. The work in [3]
introduces a MAC-Error-Warning (MEW) method with a new
type of MAC (Medium Access Control) packet. The MEW
method is similar to the Automatic Request (ARQ) mechanism,

but a special MAC packet is generated at the MAC layer before
the data chunk is discarded, which contains detailed
information (including the stream ID and the sequence number)
to notify the upper layer of the failed transmission. Arriving at
the transport layer, the MEW packet will be analyzed by the
SCTP source and all the useful information will be recovered
so as to trigger a fast retransmission of the chunk without
degrading the congestion window. The work in [4] utilizes the
ECN (Explicit Congestion Notification) indications to detect
the non-congestion packets loss. Therefore, a packets loss
without simultaneous ECN message in the same data window
will be regarded as non-congestion errors. In this case, a simple
loss-recovery procedure can be executed without applying the
normal congestion control mechanism.

Moreover, with the rapidly increased usage of wireless
devices all over the world, the faster and cheaper link level
(e.g., 802.11) mechanisms have tended to be simple (e.g.,
802.11's ARQ mechanism). This trend results in a high and
variable residual erasure rate (e.g., 10-50% erasure rate
observed by [6]) that needs to be ultimately handled end-to-
end [5].

It is noted that an SCTP segment can carry multiple chunks,
but only one overall checksum is contained in its common
header. On reception of an SCTP segment, if the checksum
field indicates a corruption, the entire segment will be
discarded no matter how many chunks are carried and whether
or not all of them are corrupted. When corruption occurs only
in individual chunks, however, if the receiver can recover the
available ones from the corrupted segment, the sender may
reduce the retransmission amount and avoid the unnecessary
behaviors of both halving congestion window and unwanted
timeouts. The precondition is that the sender can identify which
ones are corrupted.

In this paper a dynamic partial Cyclic Redundancy Check
(CRC) with flexible chunk policy is proposed to enhance the
SCTP performance by dynamically adding a checksum chunk.
In the scheme, once a sender affirms that its peer also supports
the optional partial CRC checksum scheme (this is done by
exchanging INIT/INIT-ACK chunks in the association
establishment phase), the sender can dynamically partition a
packet into one or more regions and withdraw/insert the partial
CRC checksum chunk from/into the SCTP segments, based on
the measured end-to-end packet corruption rate.

978-1-4244-2108-4/08/$25.00 © 2008 IEEE

Figure 1. Format of Checksum Chunk

On the other hand, if the overall checksum in the common
header fails at the receiver side, the SCTP receiver will check
whether there is the optional checksum chunk or not. If yes,
each partial CRC checksum item contained in the checksum
chunk will be verified in turn. As a result, those available
chunks can be recovered from the corrupted packet. Further,
the associated TSNs will be reported to the sender via the
subsequent SACK chunks so as to trigger the fast
retransmission without shrinking the congestion window at the
sender side.

The rest of this paper is organized as follows. Section II
briefly represents some extended and newly defined chunks. In
Section III, we describe the error and congestion controls based
on the dynamic partial checksum scheme. Section IV shows
some simulation results using the ns-2 networks simulator.
Finally, we conclude this paper in Section V.

II. EXTENSIONS OF SCTP CHUNKS
We present the suggestion on dynamic partial CRC

checksum with flexible chunk policy according to the
following considerations. That is, generally only individual
regions suffer bit errors as a packet travels a lossy channel. At
the receiver side, however, the entire packet has to be discarded
even if only one bit is erased, since the existing CRC
mechanisms perform an overall checksum calculation.
Nevertheless, for the environments with high BER, we may
reduce the retransmission amount as much as possible if we
apply dynamic partial CRC since only the corrupted portion
will be discarded and those available chunks can be recovered.
Thus the dynamic partial CRC mechanism may perform better
than the overall checksum scheme under worse-case channel
condition. For this purpose, the format of SACK chunk is
extended, and a checksum chunk and an optional parameter
(for both INIT and INIT-ACK chunks) are newly defined.

A. Optional parameter for both INIT and INIT-ACK Chunks
The dynamic partial CRC with flexible chunk policy is

suggested in this paper as an optional choice of the standard
SCTP. Therefore, in the association establishment phase, the
source and the destination have to affirm whether or not to
support the optional partial CRC checksum chunk over the
association. This can be done by exchanging a newly defined
optional parameter (e.g. “13”) for this purpose, using the SCTP
INIT and INIT-ACK chunks.

B. Proposed Checksum Chunk
The proposed optional partial CRC checksum chunk obeys

the chunk specifications defined in RFC2960 [1]. As an
example, Fig. 1 illustrates the proposed format of the chunk.

In the figure, each checksum item consists of the 4-byte
checksum value field and the 2-byte coverage field, which is a
total 6-byte in length. More specifically, the coverage range of
each checksum item can be obtained as per the following
formulas:

left_edge1 = 0 (1)

right_edgei=left_edgei+coverage_lengthi-1 (2)

left_edgei = right_edgei-1 + 1 (i>1) (3)

where i = 1, 2, …n, and n is the number of the partial checksum
items contained in the checksum chunk.

With the help of the partial checksum items, the sender can
dynamically adjust the chunk size and number for the pending
forward packets, depending on the measured packet corruption
rate. At the receiver side, the receiver can recover the most
available chunks and report the corruption event to the sender.
In this way, the proposed scheme can reduce the retransmission
amount and avoid the significant performance degradation
from the strong corruption.

C. Extended SACK Chunk
When a checksum chunk is extracted from a segment at

receiver side, the receiver has to check each partial checksum
item if the default overall checksum fails. Once individual
corrupted chunks are picked out, the associated TSNs and
timestamp need to be appended in the end of the subsequent
SACK chunk.

It is noted that for each segment with single data chunk, an
associated corruption item is composed of a corruption TSN
and a corresponding timestamp (‘explicit corruption item’),
which is used to explicitly report a corrupted chunk to the
sender. As opposed to the explicit corruption item, the
checksum item for the corrupted segment with multiple data
chunks consists of either the first erased chunk’s TSN while all
data chunks are corrupted or all available chunks’ TSNs if any
chunks are recovered (‘implicit corruption item’). Therefore,
on extraction of an implicit corruption item from a SACK
chunk, the sender needs to infer which unacknowledged packet
possesses these chunks. Of course, the other chunks in the same
packet must be corrupted if the recovered chunks’ number is
not zero. Technically, it is easy to pick out the corrupted
chunks from a multiple data chunks’ segment because the
sender preserves the contents of all outstanding packets till they
are acknowledged.

Figure 2 shows the example format of the extended SACK
chunk recommended in this paper.

III. ERROR AND CONGESTION CONTROLS

A. Data Transmission
At the beginning of data transmission phase, the sender can

assemble optional checksum chunk as well as one or more data
chunks into segments based on the negotiation using
INIT/INIT-ACK chunks. However, each segment’s structure

978-1-4244-2108-4/08/$25.00 © 2008 IEEE

Figure 2. Format of the extended part of SACK chunk

Figure 3. Flowcharts of processing checksum chunk

Figure 4. Flowchart of processing SACK chunk

might not be changeless. The sender can adjust the chunk size
and the number depending on the measured packet’s corruption
rate. For example, when the packet corruption rate decreases
down to a lower threshold below, the checksum chunk can be
withdrawn and one data chunk’s payload is recommended;
whereas if the packet corruption rate exceeds a higher
threshold, both checksum chunk and multiple data chunks’
payload are preferred.

B. Detection of Corruption Events
On reception of an SCTP segment, the receiver will first

verify the integrity of the whole SCTP segment by checking
the overall checksum of the common header. In case that the
segment is corrupted, the receiver will then verify each partial
checksum in turn if the checksum chunk is carried.

In particular, once checking a partial checksum fails, if it is
the first one, the receiver has to discard the whole segment
since the header portion may contain some wrong information.
On the other hand, if the first partial checksum is proven to be
valid, the subsequent partial checksums, if any, will be checked
in sequence. For each of the subsequent partial checksums
(only for the segment with multiple data chunks), if it is proven
to be valid, the corresponding data chunk can be recovered
from the corrupted segment. The detailed processing procedure
of data packet is illustrated in Figure 3.

C. Generation of SACK Chunk for Corruption
After checking all of partial checksums, the SCTP receiver

will construct a subsequent SACK chunk immediately, in
which the associated TSNs and timestamp will be appended in
the end as shown in Figure 2. In particular, if a single data
chunk’s segment is corrupted, an explicit corruption item will
be appended; otherwise if the corrupted segment contains
multiple data chunks, an implicit corruption item is needed.
Wherein, the timestamp indicates when the corruption is
detected at the receiver side. Therefore, even for the same TSN,
a renewed timestamp implies a new corruption event, and thus

requests another prompt retransmission. This allows the sender
can retransmit the same chunk for multiple times before the
retransmission timer expires. Consequently, it can let the
sender avoid the unwanted timeouts which might be induced in
conventional SCTP in case that the retransmitted chunks suffer
random bit errors in wireless channel.

D. Error and Congestion Controls
In the standard SCTP, both lost and corrupted chunks are

retransmitted by either the timer-based retransmission or the
fast retransmission. In the proposed scheme, however, the
corrupted chunk can be processed differently from the lost one
since the corruption itself indicates an explicit retransmission
request.

By comparing the history records with the corruption items
enclosed in the end of a SACK chunk, the sender can easily
infer whether a corruption item is to report a new corruption
event. If the sender determines that a corruption item reports a
new corruption, it will retransmit the corrupted chunks
immediately without deflating its congestion window.

Figure 4 shows the flowchart of processing a SACK chunk

978-1-4244-2108-4/08/$25.00 © 2008 IEEE

Table II. Packet structure and drop rates

Packet
drop rate

Packet Structure
Data Chunk

Number
Checksum
Chunk Size

Data Chunk
 Size Packet Size

58β/1498 1 10 1456 1498

70β/1494 2 22 720 1494

82β/1490 4 34 356 1490

94β/1494 6 46 236 1494

106β/1498 8 58 176 1498

118β/1462 10 70 136 1462

Table I. Parameters used for two-state error model

State Average Period Transition Probability Packet corruption
Rate

Good t1=0.5 seconds p=0.5, (1-p)=0.5 λ= 0

Bad t2=0.5 seconds (1-q)=0.5, q=0.5 β =0.1~50%

Figure 5. Goodputs with differentβ values

by the sender. In the figure, when the sender receives a SACK
chunk, it first checks whether there are any corruption items. If
no, the sender processes it as normal. If any, the sender further
determines whether the first item reports a new corruption
event. If it does, then the sender records the corrupted TSNs
and timestamp for prompt retransmission. Otherwise the sender
simply ignores it and continues to check the next one.

By tracing the measured packet corruption rate, the sender
can adjust its chunk policy in time. For example, a packet can
carry one or more data chunks depending on the different
corruption levels, or the sender can withdraw the partial
checksum chunk from the data chunks if the corruption rate is
teeny. All of the behaviors are simply and repeatable since the
partial CRC checksum chunk is proposed as an option of the
standard SCTP. In this way, the proposed scheme can
significantly improve the throughput performance of SCTP
over wireless network with a high BER.

IV. SIMULATION RESULTS
We evaluate the proposed scheme using the ns-2 network

simulator (version 2.30) [7] with the simple test topology, in
which two endpoints communicate directly through a single
path that has the bandwidth of 2 Mbps and the transmission
delay of 35ms. In each experiment, we perform the file transfer
application over SCTP for 200 seconds and compare the
goodputs (Kbps) of the standard SCTP with those of the
proposed scheme in the cases that every packet carries 1, 2, 4,
6, 8, 10 data chunks, respectively.

To emulate packet corruptions, a two-state error model is
modified to add a corruption flag in every corrupted packet’s
header instead of dropping it.

In the model, two states of ‘good’ and ‘bad’ are expressed
in terms of average error rates λ and β, transition probabilities p
and q, and average ‘good’ period of t1 seconds and ‘bad’

period of t2 seconds. If the link is in a ‘good’ state at present, it
will continue to stay in the ‘good’ state with probability p, or
transfer to the ‘bad’ state with a probability 1-p at the next
instance. Also, if the link is in a ‘bad’ state at the current
instance, then it will continue to stay in the ‘bad’ state with
probability q, or transfer to the ‘good’ state with a probability
1-q at the next instance. When the link is in the ‘bad’ state, a
SCTP segment experiences a packet corruption in the network
with the probability β. Table I summarizes the parameter
values used for the error model.

Notice that in the experiments, the standard SCTP uses the
fixed-size data chunk (1468 bytes) and each packet carries only
one data chunk. Thus every packet has a fixed 1500-byte in
size. Moreover, since the standard SCTP regards the corruption
as loss, all corrupted packets are forcedly dropped by the
receiver. Therefore, the packet drop rate is equal to β in bad
states for the standard SCTP.

On the contrary, the proposed scheme performs the
experiments using various-size data chunks. The detailed
packet structure information is shown in Table II. Furthermore,
in order to emulate the scenarios where bit errors occur in the
header portion of SCTP packets, the packet drop rate of bad
state is set to the proportion of the header size over the packet
size. In this paper, the header scope covers IP header, SCTP
common header, checksum chunk and the first data chunk’s
header. When header is corrupted, all data chunks cannot be
recovered. The detailed packet drop rate is also given in Table
II. Also, we assume in this paper that only one data chunk
suffers bit errors in every corrupted packet.

The simulation results are shown in Fig. 5. In the figure, the
horizontal axis denotes the packet corruption rate ranged from
0.1% to 50% (that is β value in bad state of the two-state error
model) and vertical axis indicates the goodput that is calculated
based on the Cumulative TSN of the final SACK chunk.

From Fig. 5 we can see that the standard SCTP gives the
higher goodputs over the proposed scheme when the packet
corruption rate (β value) is smaller than 1.5% roughly. This is

978-1-4244-2108-4/08/$25.00 © 2008 IEEE

because when β is smaller, the proposed scheme keeps a large
transmission window unchanged since there is no corruption
occurs in packet header. This will sometimes incur the
receiving buffer blocking problem at receiver side.

Beyond that point, the proposed scheme starts to appear its
advantages and outperforms the standard SCTP. Such
performance gain is anticipated since the proposed scheme can
recover most available payload form the corrupted packets and
can decrease its cwnd only when corruption occurs in packet
header portion. Whereas the standard SCTP interprets all
corruption events as the indication of network congestion in
the same way and blindly halves its cwnd repeatedly.

However, through comparing the different behaviors of the
checksum chunk with various-size data chunks, we find that
too many data chunks (e.g., more than three) may result in
some undesirable side effects, such as 1) overhead caused by
too huge checksum chunk as well as too many chunk headers,
2) much serious receiving buffer blocking problems and 3)
raised packet loss rate incurred by header corruption. This will
waste the more available bandwidth and decrease the
transmission efficiency.

V. CONCLUSIONS
In this paper, we propose a dynamic partial CRC checksum

chunk with flexible chunk policy to enhance the SCTP
throughput performance under the environments with high
BER. From the simulation results, we can see that applying the
proposed checksum chunk could provide a significant
throughput performance gain over the standard SCTP when
the packet corruption rate is high.

The performance gain of the proposed scheme comes from
the following features: Firstly, the proposed scheme can
recover the available data chunks from the corrupted packet so
as to reduce the retransmission amount as much as possible.
Secondly, by comparing the history records with the corrupted
TSN as well as the corresponding timestamp enclosed in the

end of SACK chunk, the proposed scheme can exploit a robust
retransmission policy to avoid the unwanted timeouts which
might be induced in conventional SCTP. Thirdly, the proposed
scheme can distinguish the chunk corruptions from the chunk
losses by using additional checksum chunk. Hence, it can avoid
unnecessary deflation of the congestion window in the face of
packet corruption.

ACKNOWLEDGMENT
This research was supported by the MKE (Ministry of

Knowledge Economy) of Korea, under the ITRC support
program supervised by the IITA (IITA-2008-C1090-0801-
0026).

REFERENCES
[1] R. Stewart et al., “Stream control transmission protocol,” IETF, RFC

2960, Oct. 2000.
[2] M. Allman et al., “TCP congestion control,” IETF, RFC 2581, Apr.

1999.
[3] D. Wang; S. Yang; W. Sun; "A Mac-Error-Warning Method for SCTP

Congestion Control over High BER Wireless Network", Wireless
Communications, Networking and Mobile Computing, 2005.
Proceedings. 2005 International Conference on Volume 1, Sept. 23-26,
2005 Page(s):513 - 516.

[4] G. Ye; S., T.N.; M. J Lee; "Improving Stream Control Transmission
Protocol Performance Over Wireless networks", Selected Areas in
Communications, IEEE Journal on Volume 22, Issue 4, May 2004
Page(s):727 – 736.

[5] O. Tickoo, V. Subramanian, S. Kalyanaraman and K. K. Ramakrishnan
"LT-TCP: End-to-End Framework to Improve TCP Performance over
Networks with Lossy Channels," In proceedings of IEEE 13th
International Workshop on Quality of service (IWQoS), Passau, Jun 21-
23, 2005.

[6] D. Aguayo, J. Bicket, S. Biswas, G. Judd and R. Morris, ”Link-level
Measurements from an 802.11b Mesh Network”,SIGCOMM 2004, Aug
2004.

[7] Network Simulator (ns-2), available from http://www.isi.edu/nsnam/ns/

978-1-4244-2108-4/08/$25.00 © 2008 IEEE

	Select a link below
	Return to Proceedings
	Return to Main Menu

