I. 서론

인터넷 기반 통신망 및 응용서비스의 급격한 성장으로 인해 공중 ATM망에서의 IP 서비스 전송 기술에 대한 표준화 요구가 증가하고 있다. 그 동안 사설 ATM망에서의 IP 서비스 전송기술로써 C-IPOA (Classical IP over ATM) [11], MPOA (Multi-Protocol Over ATM) [6] 및 MPLS (Multi-Protocol Label Switching) [17, 18] 기술들이 제안되어 왔다.


또한 최근에 IETF에서는 IP 라우팅(routing) 및 ATM 스위칭(switching) 기능을 결합한 MPLS 기술을 표준화하고 있다. 특히 MPLS 기술은 기존 C-IPOA 및 MPOA 등의 계층적 모형 (overlay model)이 대규모망에서 갖는 확장성 (scalability) 문제를 해결하기 위해 제안되었다. 즉, IP 라우팅 정보를 이용하여 IP 데이터의 전송경로를 결정하고, 결정된 경로를 따라 ATM 스위칭 기능을 이용하여 데이터를 전송하는 방식이다.

한편 ITU-T SG13, Q.20 그룹에서는 공중 ATM망에 적합한 IP 데이터 전송 방식에 대한 표준화 작업을 진행 중에 있으며 [11], 이를 위해 먼저 기존에 제안되어 온 IPOA 해법들을 분석하고, ATM망에서 전송될 수 있는 주요 IP 서비스를 정
의한 다음, 각 정의된 IP 서비스에 따라 적절한 IFOA 해법을 권고하는 방식을 밝혔다.
본 고에서는 먼저 공중망에서의 요구되는 IFOA 프레임워크를 살펴보고, ATM 맵에서 주요 IP 서비스들을 제공할 수 있는 방안을 살펴본 다음, ITU-T에서 권고되는 공중망에서의 IFOA 해법에 대하여 기술하고자 한다.

II. 공중망에서의 IFOA 프레임워크

공중 IFOA 맵의 프레임워크(framework)는 크게망구조(network architecture)와 프로토콜구조(protocal architecture) 부분으로 정의될 수 있다.

1. IFOA 망구조

(그림 1)은 공중망에서의 IFOA 망구조로 공중ATM 맵을 중심으로 여러 가지 다른 종류의 망이 라우터(router)를 통해 연결될 수 있음을 보여준다. 공중ATM 맵은 기본적으로 순수 ATM 서비스를 제공하고 있으나, IP 서비스 제공을 위해서 IP over ATM 기능이 수행된다. 인터넷 사용자는 접속망, ISP(Internet Service Provider), 사업망 혹은 다른 도메인(domain)의 공중망 등을 통하여 대상이 되는 공중ATM 코어(core) 맵에 진입할 수 있다. 대상이 되는 공중 IFOA 맵과 여러 형태의 주변 망과의 연동은 경계 라우터에서 수행되어야 하며, 이에 대한 연구는 ITU-T에서 추후에 논의될 예정이다.

〈그림 2〉는 공중 및 사업 ATM 맵에서 IP 서비스를 제공하기 위한 망구성(network configuration) 약제를 보여준다. 그림에서 보이듯이 IP 서비스는 ATM의 스위칭 기능과 IP 서비스 기능(IPSF)을 통하여 제공된다. 이 경우 ATM과 IPSF의 인터페이스는 ITU-T 권고안 I.364(3)에서 정의되는 P 혹은 M Reference Points로 정의될 수 있다. 여기에서 IPSF의 전형적인 예로는 IP와 ATM 간의 주소변환 서비스 등을 들 수 있다.

ATM 맵 외부의 ISP 혹은 ES(End System)들은 Private UNI 혹은 Public UNI 등을 통하여 IFOA 맵에 접속되며, ATM 맵에 직접 접속하는 경우 각 ES들은 그 자체가 IFOA 프로토콜 스택을 가지고 있어야 한다.

2. IFOA 프로토콜 구조

〈그림 3〉은 공중 IFOA 맵에서 IP 서비스전송을 위한 일반적인 프로토콜 참조 모델을 보여준다. 이 모델에서 각 계층은 해당하는 계층관리(Layer
1) IPSF: IP Service Functions
2) P or M: ITU-T 권고안 I.364에서 정의된 Reference Points
3) ES: IPOA 프로토콜 스택을 갖는 End System

그림 2. 공중망에서의 IPOA 양구성

그림 4. 공중 IPOA 방에 대한 프로토콜 참조 모델
Management) 기능블록과 연관되어 구현되고, 각 계층관리 기능블록은 자체의 PCI (Protocol Control Information)의 처리 및 관리 기능을 담당하게 된다. 각 계층간의 정보 교환은 링관리 (Network Management) 기능을 통하여 이루어진다.

어떤 IPOA 네트워크 공용에 대해서는 일부 기능 블록들이 정의되지 않은 수도 있다. 따라서 외의 기능 블록들은 기본적인 기능 블록으로써의 의미가 강하다. 하지만 다른 기능 블록이 정의되는 경우에는 기능 블록간의 연동 및 상호운용성 (interoperability)이 유지되어야 한다.

위 그림에서 정의된 몇몇 주요 기능에 대해 기술하면 다음과 같다.

♦ IP 계층 기능
IP 계층은 송신자에서 수신자에 이르기까지 IP 데이터그램 포워딩 (forwarding) 기능을 제공한다. IP 포워딩은 페킷을 받았을 때, 해당 페킷이 어떻게 처리되어야 하는지를 결정한다. 페킷은 자체 로컬에서 중요될 수도 있고, 외부로 전달될 수도 있다. 외부로 전달되는 트래픽에 대해서는 어떤 출력 포트 혹은 인터페이스로 보내야 하는지를 결정한다. IPOA 프로토콜 구조는 IP 버전 (IPv4 혹은 IPv6)에 독립적이어야 한다. 또한 IP계층 기능은 수송계층의 TCP/UDP 기능 및 IP-SSCS/AAL5 기능과 독립적이어야 한다.

♦ IP-SSCS/AAL5 계층 기능
이 계층은 IP 패킷을 AAL5 위로 매핑 (mapping)하는 기능을 수행한다. 이를 위한 주요 기능으로는 LLC/SNAP Encapsulation (7) 등이 있다.

♦ 망 관리 기능
망 관리 기능은 구체적인 IPOA 네트워크 공용에 따라 다르게 정의될 수 있지만, 일반적으로 Fault 관리, Performance 관리, Configuration 관리 및 보안관리 등을 포함한다.

♦ 시그널링 및 리우팅 제어 기능
이 기능은 IP 및 ATM 제어에 필요한 모든 시그널링 및 리우팅 기능블록들을 포함한다.

이 외의 다른 주요 기능들은 다른 ITU-T 편고안에서 기술되고 있다.

III. ATM 망에서의 IP 서비스 제공

ITU-T 표준화 작업에서는 공중 ATM 망에서 IP 서비스 제공을 위해 먼저 두 가지의 IP 서비스를 중점적으로 고려하는데, QoS (Quality of Service) 지원 IP 서비스와 VPN (Virtual Private Network) 서비스가 그것이다. 이 외의 IP 서비스도 추후에 논의될 예정이다. 본 절에서는 공중 ATM 망에서 각 IP 서비스를 제공하기 위한 요구사항 및 고려사항에 대하여 기술한다.

1. QoS IP 서비스

IP 서비스의 품질 보장을 위해 지금까지 두 가지의 기술이 제안되어 왔다. 하나는 개별 IP flow에 대하여 QoS를 보장하기 위한 Integrated Services (이하 Intserv) 방식이고, 또 하나는 개별 flow를 취합하여 (aggregated) QoS를 보장하기 위한 Differentiated Services (이하 Diffserv) 방식이다.

Intserv 방식에서는 RSVP (Resource Reservation Protocol) (8)에 의해 전달되는 IP flow에 대한 QoS 요구사항을 충족시켜준다. 패킷이 전달되는 경로의 RSVP 라우터에서 승인채택 및 지원여부가 이루어진다. Intserv 방식에서는 Guaranteed Service (GS) (10) 및 Controlled-Load Service (CLS) (9) 등의 두
가. 서비스 매핑(mapping) 기능
공중 ATM망에서 QoS IP 서비스를 지원하기 위해 IP 서비스와 ATM 서비스간의 매핑이 필요하다. (그림 4)은 IPOA 망에서 가능한 매핑 목록을 보여준다. 이중 매핑 1, 2, 9, 11은 IP 서비스와 ATM Forum에서 정의된 ATM 서비스와의 매핑이며, 매핑 3, 4는 Intserv와 Diffserv와의 매핑으로 IETF에서의 고려된 것이다. ITU-T에서는 매핑 6과 12에 대해서만 다룬다. 한편 그림에서 매핑 5와 10은 ATM 망에서 IP서비스를 수용하는 측면에서 반드시 고려될 필요는 없다.
나. IP Intserv와 ATM 매핑
IP intserv 트래픽이 ATM망에 도착할 때 서비스 및 QoS 매핑이 필요하며, 이러한 매핑은 다음의 요구사항을 충족해야 한다.
- 선택되는 ATC (ATM Transfer Capability)는 Intserv의 지연시간 요구조건을 만족시켜야 한다.
- 또한 intserv flow의 트래픽 특성에 맞는 대역폭을 예약해야 한다.

<table>
<thead>
<tr>
<th>ATC</th>
<th>QoS Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBR</td>
<td>Class 1, 2 or U</td>
</tr>
<tr>
<td>SBR 1</td>
<td>Class 1, 2 or U</td>
</tr>
<tr>
<td>SBR 2-3</td>
<td>Class 3 or U</td>
</tr>
<tr>
<td>ABR</td>
<td>Class 3 or U</td>
</tr>
</tbody>
</table>

[표 1. ITU-T에서 정의된 ATM 서비스]

![그림 4. 공중망에서 IP와 ATM의 매핑]
Rate)과 유사하며, SBR (Statistical Bit Rate)은 VBR (Variable Bit Rate)과 유사하다. 한편, QoS 클래스스 1은 엄격한 세션시간(cell delay) 및 손실(cell loss) 요구사항을 가지며, QoS 클래스스 2, 3은 지연과 손실에 더 민감한 서비스를 위해 개발되었다.

IP와 ATM 간의 매핑 관계는 구현이슈이긴 하지만, 일반적으로 다음 사항을 고려하여 매핑 관계를 정할 수 있다.

- 먼저 DBR에서 비해서 SBR ATC가 통제적 다중화 이득(statistical multiplexing gain)을 크므로 SBR ATC가 선호된다.
- 또한 SBR를 사용하는 경우, SBR3 ATC가 선호된다. SBR3만이 태깅옵션(tagging option)을 제공하며, 이는 초과 트래픽을 best-effort 트래픽으로 처리하도록 하는 intserv 요구사항을 만족시킬 수 있기 때문이 다.

위의 사항을 고려할 때에 intserv/기의 경우, 매우 엄격한 지연요구사항을 가지므로, QoS 클래스 1을 갖는 SBR1 ATC가 선호된다. 또한 intserv/CLS의 경우, 지연 및 손실 요구도가 상대적으로 작으므로, SBR3 ATC가 선호된다. Intserv/기의 SBR1으로 매핑하는 경우 태깅옵션을 적용할 수 없다. 이를 위해 ITU-T I.371의 수중 전사환 작업에서는 QoS 클래스 1과 거의 동일한 QoS 클래스 4를 정의하여 SBR3에서 지원될 수 있도록 하는 일도 추진 중에 있다. 이 경우, SBR3 ATC에 QoS 클래스 4를 intserv/기에 매핑시킬 수 있다.

다. IP Diffserv와 ATM 매핑

IP Diffserv의 경우, intserv와는 달리 ATM 서비스로의 매핑을 표준화하기 매우 어려운데, 그 이유는 다음과 같다.

- 표준 규격에서 IP diffserv는 최종 서비스가 아닌 PHB에 기초하여 정의되고 있다. PHB는 종단간의 서비스가 아닌 전송 경로상의 개별 라우터에서의 패킷 처리 행위를 규정하고 있다. 공극적으로 diffserv PHB를 통해 최종 서비스가 현실화 되겠지만, IETF에서는 diffserv 서비스에 대한 정의를 내리지 않고 있다.
- IETF에서는 diffserv 서비스를 각 사업자 도메인(domain)의 에지(edge) 라우터에서 트래픽 컨디셔닝(traffic conditioning) 형태로 규정하도록 한다. 즉, 사업자와 고객사이의 협상 및 계약을 통해 diffserv 서비스가 현실화 되고, 이러한 협상을 토대로 각 패킷에 대해 PHB가 정의될 것이다.

사실상 IETF diffserv에서는 사업자가 자율적으로 서비스를 정의하도록 한다. 이것은 종단간에 서비스 연결(connection)을 정의하는 ATM과는 다른 개념이다. 따라서, diffserv 사업자가 명시적으로 서비스를 정의한 후에, ATM ATC와의 매핑 관계가 정의될 수 있다. 예를 들어, diffserv를 통해 엄격한 지연요약을 요구하는 소위 프리미엄(premium) 서비스를 정의할 수 있으며, 이러한 서비스에 EF-PHB가 적용될 수 있다. 이 경우 ATM에서는 QoS 클래스 1을 갖는 DBR ATC를 이용해 프리미엄 서비스를 매핑할 수 있을 것이다.

2. IP VPN(Virtual Private Network) 서비스

가. IP VPN 서비스의 정의
VPN은 그룹화 된 여러 고객 사이트를 연결하여 주는 가상 LAN이다. 특히 IP VPN에서는 이러한 VPN을 통해 IP 서비스를 전송하게 된다. 각 고객 사이트는 자기가 속한 그룹 이외의 다른 사이트와도 연결할 수 있다.

나. IP VPN 지원을 네트워크 모델
ATM망에서 IP VPN서비스를 제공하기 위한 전형적인 네트워크 모델이 (그림 5)에 나와 있다. 그림에서 각 고객 사이트(CES)들은 ATM 망에서 논리적인 네트워크 연결을 갖는다.

IV. 공중망에서의 IPOA 해법

1. IPOA 해법에 대한 ITU-T 표준화 동향

본 고의 서론에서 기술한 것처럼, ATM망에서 IP 서비스를 제공하기 위한 기술로써 C-IPOA, MPOA 및 MPLS 등이 제안되어 왔다. 지난 99년 9월 ITU-T SG13 IP Expert 회의에서는 (원문 권고인 Lipatm), 공중망에서의 IPOA 해법으로 MPLS 기술을 표준으로 결정하였다. 특히, 이러한 결정은 IP diffserv 및 VPN 서비스에 대하여 MPLS 기술이 더 효과적인 분석에 근거한다.
IP intserv의 경우에는 C-IPOA가 MPLS와 유사한 장점을 가지는 것으로 판단되나, 공중망에서 단일 해법을 권고하는 것이 바람직하다는 관점에서 ITU-T는 MPLS를 단일 IPOA 해법으로 결정하였다.

MPLS를 단일 해법으로 결정한 구체적인 근거로는 다음 사항들로 들 수 있다.
- 방식 (network size) 관점 : MPOA는 소규모 망에 매우 적합하지만 대규모 망에 적용될 때 소위 N-square의 확장성 문제를 갖는다. 따라서 대규모 공중망에서는 MPOA에 비해 확장성 및 유연성이 좋은 MPLS가 선호 된다.
- 링크계층 관점 : MPLS는 다양한 링크계층에서 운용되도록 설계되었기 때문에, 다양한 링크계층의 망과 연동을 필요로 하는 공중 ATM 망에 적합하다.
- IPOA 망에서의 ATM 제어 관점 : MPLS는 소위 Ship in the Night 방식을 사용하여, 하나의 ATM 장비에서 MPLS 신호방식과 ATM 신호방식의 게이트웨이 기능을 할 수 있지만, 이는 일반적으로 사용하기가 어렵다.

그림 5. 공중망에서 IP VPN 네트워크 모델
IP 트래픽 관리 관점 : ATM은 트래픽 관리 측면에서 매우 효율적인 기술이며, MPLS 신호방식은 ATM 신호방식과 유사하게 설계 되었기 때문에, 당 사업자 관점에서 MPLS는 효과적인 트래픽 관리 기능을 제공한다.

기존 부가 설명 관점 : MPLS는 기존 ATM 망에서도 Ship in the night 방식으로 보급 될 수 있으며, 다른 링크자층 망에서도 유연하 게 배치되기 때문에, 기존 부가 설명을 그대로 활용할 수 있다.

VPN 지원 관점 : MPLS의 주요 장점중 하나는 QoS 타우팅을 가능하게 하며 연결시점 서비스를 제공한다는 점이다. 또한 동적 터널링(tunneling) 기능도 제공하여 VPN 논리적 망을 유연하게 구성할 수 있다.

IP QoS 지원 관점 : MPLS는 diffserv를 목표로 개발된 기술이다. 기본 철학 및 망 운영 방식이 매우 비슷하다. 공중망에서 diffserv 방식이 IP QoS 제공을 위해 널리 쓰일 것으로 전망됨에 따라 MPLS 방식이 신호된다. Intserv의 경우에도 C-IPOA 방식과 유사한 장점의 갖는다.

2. 공중 ATM 망에서의 MPLS 망 구조

(그림 6)는 공중 ATM 망에서의 MPLS 구현에 대한 일반적인 네트워크 모델을 보여준다.

ATM 기반 MPLS 망은 LER과 LSR으로 구성 된다. LER은 망의 진입(ingress) 및 출구 (egress)에 위치하여 IP 트래픽 특성을 ATM 기반 MPLS서비스 특성으로 매핑시키는 역할을 한다. 매핑된 IP 트래픽 전송을 위해 LDP 신호방식이 사용되며, IP 패킷에 대한 전송경로가 얻어진다. 이러한 경로를 LSP라고 한다. LSP 상에 위치한 각 LSR들은 QoS를 위한 자신 예약을 하고, 필요 한 패킷 처리 정보를 공유하게 된다.

3. 공중 ATM 기반 MPLS 망에서의 제어 프로토콜


ITU-T는 공중 ATM 기반 MPLS 망 구현을 위해 다양한 같은 MPLS레이블(label) 분배 제어 방식을 권고하고 있다.

그림 6. 공중 ATM 망에서 MPLS 네트워크 모델
레이블 전달 (advertisement) 방식
ATM 기반 MPLS망에서는 ATM VCI/VPI가 MPLS 레이블로 사용된다. 현재까지 두 가지의 레이블 전달 방식이 제안되어 왔다.
(1) 별도의 레이블 분배 방식 (예: LDP)
(2) 기존 프로토콜을 이용하는 piggybacking 방식 (예: RSVP, BGP 등)

두 가지 모두 사용될 수 있지만, ITU-T에서는 최구먼 방식을 권고한다. 사실상 이 해법은 IETF에서도 어느 정도 합의된 의견을 보이고 있다.

레이블 할당 (allocation) 방식
LSR 간에는 다음과 같은 방식으로 레이블이 할당될 수 있다.
(1) Unsolicited downstream 방식
(2) Downstream on demand 방식

두 가지 방식 중에 (2)번 방식이 선호된다. (1)번 방식에서는 레이블 요청 (request) 메시지 없이도 레이블이 할당되기 때문에 분별한 VCI/VPI 들이 낭비될 수 있기 때문이다. 반면 (2)번 방식에서는 레이블 요청이 있을 때만 레이블 할당이 이루어진다. 또한 (2)번 방식은 사실상 기존 ATM 신호 방식과 유사하여, 둘 사이의 연동 측면에서도 장점 을 갖는다.

LSP 제어 방식
MPLS LSP 제어를 위해 다음과 두 가지 방식이 제안되어 왔다.
(1) 순차적 (Ordered) 제어 방식
(2) 독립적 (independent) 제어 방식

독립적 제어 방식은 각 LSR들이 FEC (Forwarding Equivalence Class) 혹은 LSP에 대해 독립적으로 레이블을 할당하기 때문에, 같은 LSP에 대한 레이블 할당 과정에서 각 LSR들이 일치되지 않는 결정을 할 수 있다. 순차적 방식은 이 러한 문제점이 없으며 특히 VCI/VPI 자원을 사업자들의 목적에 맞게 보다 효율적으로 관리할 수 있다.

트래픽 관리를 위한 LDP 신호방식
MPLS망에서 IP 트래픽 관리 문제는 QoS 라우팅 및 망자원 관리 측면에서 매우 중요한 이슈이다. 그 동안 두 가지의 방식이 제안되어 왔다.
(1) CR-LDP
(2) RSVP-TE(Traffic Engineering) 확장

- LDP와 CR-LDP는 같은 종류의 프로토콜이 다.
- CR-LDP는 TCP를 기반으로 작동하고 RSVP-TE는 UDP를 기반으로 운용되기 때문에 프로토콜 신뢰성 측면에서 CR-LDP가 선호된다.
- 확장성 측면에서도 CR-LDP는 diffserv 개념과 유사하고, RSVP는 intserv 개념과 유사하 여 CR-LDP가 대규모 망에서 확장성이 우수하다.
- CR-LDP는 ATM 신호방식과 유사하여 둘 사이의 연동 측면에서 선호된다. 특히 CR-LDP는 ATM처럼 송신자 기반으로 운용되는데 비하여, RSVP는 수신자 기반으로 운용된다.

일부 전문가들은 이 이슈를 통신사업자의 구현 문제로 분류하며, 두 가지 모두 표준으로 권고하여 사업자의 선택에 맡겨야 한다고 주장한다. 특히 기존

V. 결론
지금까지 공중 ATM 통신망에서의 IP 서비스 전송 기술에 대해 ITU-T 표준화 동향을 중심으로 살펴보았다. 인터넷 서비스의 성장으로 인해 차세대 인터넷에서는 초고속의 QoS 보장 IP 전송기술이 점점히 요구된다. 본 교에서 살펴본 것처럼, 현재 이러한 기술 관련 표준화 작업이 본격적으로 진행되고 있으며, 오늘 간에 상당 부분의 표준들이 결정될 전망이다.

현재까지의 표준화 작업을 토대로 향후에 다가올 질 이상에 대해 정리하면 다음과 같다.

- 공중 ATM 망에서의 MPLS 배치 전략: MPLS는 최근 기술이고 아직 공중 ATM 방에 널리 보급되지 않았다. 따라서 IP 서비스 제공을 위해 어떠한 방식으로 MPLS를 공중 ATM 망에 보급할 것인가에 대한 전략 혹은 정책적 이유가 해결되어야 한다. 예를 들어 ATM 망 관리 기능이 전혀 배제된 MPLS 방으로 전환될 수도 있으나, 가능한 기존 ATM의 장점을 살리면서 두 방식을 효과적으로 혼합하는 방식으로 전환될 수도 있다. 또한 하나의 ATM 정비에서 ATM 및 MPLS 서비스가 모두 제공되는 경우, VCI/VPI 레이블 할당에 관한 문제도 해결되어야 한다. (23, 24)
- MPLS망에서의 멀티캐스트: ATM에서의 멀티캐스트 서비스 제공 기술은 아직 해결되고 있지 않은 것처럼 MPLS망에서의 멀티캐스트 지원 기술이 다루어져야 한다.

최근 차세대 인터넷 국제 표준화 동향을 살펴보면, 기술개발과 관련 표준화 작업이 동시에 추진되는 것을 볼 수 있다. 이는 관련 기술의 지식재산권 형상화와 시장점유 높음에서 표준화의 역할이 매우 큰 곳을 반영하고 있다. 따라서 우리의 차세대 기관에 개방 완료된 국제표준 기술을 습득, 도입하는 과거의 소극적 자세에서 벗어나, 수익성 높은 차세대 인터넷 기술을 중심 개발하여 ITU-T 혹은 IETF 등의 국제표준화 기구에 개발 표준을 반영하는 적극적인 자세가 필요하다.

*참고 문헌


고석주
1992년 2월 한국과학기술원 경영공학부(공학사)
1994년 2월 한국과학기술원 경영공학부(공학석사)
1998년 8월 한국과학기술원 산업공학부(공학박사)
1998년 8월 현재 한국전자통신연구원 표준연구센터
선임연구원
※ 관심분야: 차세대 인터넷 기술, 차세대 수송계층 프로토콜, ATM 기반 고속통신망 설계

신명기
1992년 2월 홍익대학교 전자계산학과(이학사)
1994년 2월 홍익대학교 대학원 전자계산학과(이학석사)
1994년 현재 한국전자통신연구원 표준연구센터 연구원
※ 관심분야: 차세대 인터넷 기술, 멀티미디어 응용, 협동응용 기술

김용진
1983년 2월 연세대학교 전자공학과(공학사)
1989년 2월 한국과학기술원 전기 및 전자공학부(공학석사)
1997년 2월 한국과학기술원 전기 및 전자공학부(공학박사)
1983년~현재 한국전자통신연구원 표준연구센터 선형 표준연구팀장
※ 관심분야: 고속통신망기술, IP over ATM, 무선 ATM 기술